

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Core Mathematics C1 (6663/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students www.pearson.com/uk

Summer 2015
Publications Code UA041193
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Solving
$$ax^2 + bx + c = 0$$
: $a\left(x \pm \frac{b}{2a}\right)^2 \pm p \pm \frac{c}{a} = 0$, $p \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number		Scheme	Marks
1.(a)	20	Sight of 20. (4×5 is not sufficient)	B1
(b)	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} \times \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}}$	Multiplies top and bottom by a correct expression. This statement is sufficient. NB $2\sqrt{5} + 3\sqrt{2} \equiv \sqrt{20} + \sqrt{18}$	(1) M1
	(Allow to multipl	y top and bottom by $k(2\sqrt{5}+3\sqrt{2})$	
	$=\frac{\dots}{2}$	Obtains a denominator of 2 or sight of $(2\sqrt{5} - 3\sqrt{2})(2\sqrt{5} + 3\sqrt{2}) = 2$ with no errors seen in this expansion. May be implied by $\frac{\dots}{2k}$	A1
		ble. The 2 must come from a correct method.	
		there is no need to consider the numerator. $2\sqrt{5} + 2\sqrt{2}$	
	e.g. $\frac{2(MR?)}{2\sqrt{5}-3\sqrt{5}}$	$\frac{1}{2} \times \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}} = \frac{\dots}{2} \text{ scores M1A1}$	
	Numerator = $\sqrt{2}(2\sqrt{5} \pm 3\sqrt{2}) = 2\sqrt{10} \pm 6$	An attempt to multiply the numerator by $\pm \left(2\sqrt{5} \pm 3\sqrt{2}\right)$ and obtain an expression of the form $p+q\sqrt{10}$ where p and q are integers. This may be implied by e.g. $2\sqrt{10}+3\sqrt{4}$ or by their final answer.	M1
	(Allow attempt to mu	Iltiply the numerator by $k(2\sqrt{5}\pm 3\sqrt{2})$	
	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{2\sqrt{10} + 6}{2} = 3 + \sqrt{10}$	1 5	A1
		Allow $1\sqrt{10}$ for $\sqrt{10}$	(4)
			(4) (5 marks)
		Alternative for (b)	
	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{1}{\sqrt{10} - 3} \text{ or } \frac{2}{2\sqrt{10} - 3}$	M1: Divides or multiplies top and bottom by $ \frac{\sqrt{2}}{6} $ A1: $\frac{k}{k(\sqrt{10}-3)}$	M1A1
	$= \frac{1}{\sqrt{10} - 3} \times \frac{\sqrt{10} + 3}{\sqrt{10} + 3}$	M1: Multiplies top and bottom by $\sqrt{10} + 3$	M1
	$=3+\sqrt{10}$		A1
2		4 0 4 2 2 2 20 0	
2.	$y - 2x - 4 = 0, 4x^2 + y^2 + 20x = 0$		

Question Number	S	Scheme	Marks
	$y = 2x + 4 \Rightarrow 4x^{2} + (2x + 4)^{2} + 20x = 0$ or $2x = y - 4 \text{ or } x = \frac{y - 4}{2}$ $\Rightarrow (y - 4)^{2} + y^{2} + 10(y - 4) = 0$	Attempts to rearrange the linear equation to $y =$ or $x =$ or $2x =$ and attempts to fully substitute into the second equation.	M1
	$8x^{2} + 36x + 16 = 0$ or $2y^{2} + 2y - 24 = 0$	M1: Collects terms together to produce quadratic expression = 0. The '= 0' may be implied by later work. A1: Correct three term quadratic equation in <i>x</i> or <i>y</i> . The '= 0' may be implied by later work.	M1 A1
	$(4)(2x+1)(x+4) = 0 \Rightarrow x = \dots$ or $(2)(y+4)(y-3) = 0 \Rightarrow y = \dots$	Attempt to factorise and solve or complete the square and solve or uses a correct quadratic formula for a 3 term quadratic.	M1
	x = -0.5, x = -4 or y = -4, y = 3	Correct answers for either both values of <i>x</i> or both values of <i>y</i> (possibly un-simplified)	A1 cso
	Sub into $y = 2x + 4$ or Sub into $x = \frac{y - 4}{2}$	Substitutes at least one of their values of x into a correct equation as far as $y =$ or substitutes at least one of their values of y into a correct equation as far as $y =$	M1
	y = 3, y = -4 and x = -4, x = -0.5	Fully correct solutions and simplified. Pairing not required. If there are any extra values of <i>x</i> or <i>y</i> , score A0.	A1
			(7 marks)
	Special Cas	e: Uses $y = -2x - 4$	
	$y = 2x + 4 \Rightarrow 4x^{2} + (-2x - 4)^{2} + 20x = 0$		M1
	$8x^2 + 36x + 16 = 0$		M1A1
	$(4)(2x+1)(x+4) = 0 \Rightarrow x = \dots$		M1
	x = -0.5, x = -4		A0
	Sub into $y = 2x + 4$	Sub into $y = -2x - 4$ is M0	M1
	y = 3, y = -4 and x = -4, x = -0.5		A0

Question Number	Scheme	Marks
3.	$y = 4x^3 - \frac{5}{x^2}$ $M1: x^n \to x^{n-1}$	
(a)	$12x^{2} + \frac{10}{x^{3}}$ $= .g. Sight of x^{2} or x^{-3} or \frac{1}{x^{3}}$ $= A1: 3 \times 4x^{2} or -5 \times -2x^{-3} (oe)$ $(Ignore + c for this mark)$ $= A1: 12x^{2} + \frac{10}{x^{3}} or 12x^{2} + 10x^{-3} all on one line and no + c$	M1A1A1
	Apply ISW here and award marks when first seen.	
		(3)
(b)	M1: $x^n \to x^{n+1}$. e.g. Sight of x^4 or x^{-1} or $\frac{1}{x^1}$ Do <u>not</u> award for integrating their answer to part (a) A1: $4\frac{x^4}{4}$ or $-5 \times \frac{x^{-1}}{-1}$ A1: For fully correct and simplified answer with + c all on one line. Allow $x^4 + 5 \times \frac{1}{x} + c$ Allow $1x^4$ for x^4	M1A1A1
	Apply ISW here and award marks when first seen. Ignore spurious integral	
	signs for all marks.	(2)
		(3)
		(6 marks

Question Number	Sch	eme	Marks
4(i).(a)	$U_3 = 4$	cao	B1
			(1)
(b)	$\sum_{n=1}^{n=20} U_n = 4 + 4 + 4 \dots + 4 \text{ or } 20 \times 4$	For realising that all 20 terms are 4 and that the sum is required. Possible ways are $4+4+4+4$ or 20×4 or $\frac{1}{2}\times20(2\times4+19\times0)$ or $\frac{1}{2}\times20(4+4)$ (Use of a correct sum formula with $n=20$, $a=4$ and $d=0$ or $n=20$, $a=4$ and $l=4$)	M1
	= 80	cao	A1
	Correct answer with no	working scores M1A1	
			(2)
(ii)(a)	$V_3 = 3k, V_4 = 4k$	May score in (b) if clearly identified as V_3 and V_4	B1, B1
			(2)
(b)	$\sum_{n=1}^{n=5} V_n = k + 2k + 3k + 4k + 5k = 165$ or $\frac{1}{2} \times 5(2 \times k + 4 \times k) = 165$ or $\frac{1}{2} \times 5(k + 5k) = 165$	Attempts V_5 , adds their V_1, V_2, V_3, V_4, V_5 AND sets equal to 165 or Use of a correct sum formula with $a = k$, $d = k$ and $n = 5$ or $a = k$, $l = 5k$ and $n = 5$ AND sets equal to 165	M1
	$15k = 165 \Longrightarrow k = \dots$ $k = 11$	Attempts to solve their linear equation in k having set the sum of their first 5 terms equal to 165. Solving $V_5 = 165$ scores no marks.	M1
	κ – 11	Cao and Cso	(3)
			(8 marks)

Question Number			Sche	eme	Marks
5(a)	$b^{2}-4ac < 0 \Rightarrow 4^{2}-4(p-1)(p-5)$ $0 > 4^{2}-4(p-1)(p-5)$ $4^{2} < 4(p-1)(p-5)$	5 < 0 or $5 < 0$	two of quadra examp Must be equated M1.Th	ttempts to use $b^2 - 4ac$ with at least a , b or c correct. May be in the atic formula. Could also be, for ale, comparing or equating b^2 and $4ac$, be considering the given quadratic on. Inequality sign not needed for this are must be no x terms. Or a correct un-simplified inequality not the given answer	M1A1
	$4 < p^2 - 6p - 6$			Correct solution with no errors that includes an expansion of $(p-1)(p-5)$	A1*
					(3)
(b)	$p^2 - 6p + 1 = 0 \Longrightarrow$	→ p =	their q	attempt to solve $p^2-6p+1=0$ (not quadratic) leading to 2 solutions for p t allow attempts to factorise – must be the quadratic formula or completing mare)	M1
	$p = 3 \pm 2\sqrt{2} \text{ or any equivalent correct expressions e.g.}$ $p = \frac{6 \pm \sqrt{32}}{2} \text{ (May be implied by their inequalities)}$ Discriminant must be a single number not e.g. 36 - 4		A1		
	Allow the M1A1 to score anywhere for solving the given quadratic				
	$p < 3 - \sqrt{8}$ or			M1: Chooses outside region – not dependent on the previous method mark A1: $p < 3 - \sqrt{8}$, $p > 3 + \sqrt{8}$ or equivalent e.g. $p < \frac{6 - \sqrt{32}}{2}, p > \frac{6 + \sqrt{32}}{2}$ $(-\infty, 3 - \sqrt{8}) \cup (3 + \sqrt{8}, \infty)$ Allow ",", "or" or a space between the answers but do not allow $p < 3 - \sqrt{8} \text{ and } p > 3 + \sqrt{8} \text{ (this scores M1A0)}$ Apply ISW if necessary.	M1A1
	A correct solution to	the anadi	ratic foll	lowed by $p > 3 \pm \sqrt{8}$ scores M1A1M0A	<u> </u>
1	a correct solution to			$\sqrt{8}$ scores M1A0	
Al	llow candidates to u			but must be in terms of p for the final	A1
			· r		(4)
					(7 marks)

Question Number	Schen	ne	Marks
6(a)	$(x^2+4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{x^3 - 3x^2 + 4x - 12}{2x} = \frac{x^2}{2} - \frac{3}{2}x + 2 - 6x^{-1}$	M1: Attempt to divide each term by $2x$. The powers of x of at least two terms must follow from their expansion. Allow an attempt to multiply by $2x^{-1}$ A1: Correct expression. May be un-simplified but powers of x must be combined e.g. $\frac{x^2}{2}$ not $\frac{x^3}{2x}$	M1A1
	$\frac{dy}{dx} = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	ddM1: $x^n \rightarrow x^{n-1}$ or $2 \rightarrow 0$ Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept $1x$ or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 . If they lose the previous A1 because of an incorrect constant only then allow recovery here and in part (b) for a correct derivative.	ddM1A1
			(5)
	See appendix for alternatives u	1	
(b)	At $x = -1$, $y = 10$	Correct value for y	B1
	$\left(\frac{dy}{dx}\right) = -1 - \frac{3}{2} + \frac{6}{1} = 3.5$	M1: Substitutes $x = -1$ into their expression for dy/dx A1: 3.5 oe cso	M1A1
	y-'10'='3.5'(x1)	Uses their tangent gradient which must come from calculus with $x = -1$ and their numerical y with a correct straight line method. If using $y = mx + c$, this mark is awarded for correctly establishing a value for c .	M1
	2y-7x-27=0	$\pm k(2y-7x-27) = 0 \operatorname{cso}$	A1
			(5)
			(10 marks)

Question Number	Schem	ne	Marks	
7.(a)	$\left(4^{x} =\right)y^{2}$	Allow y^2 or $y \times y$ or "y squared" $4^x = 1$ not required	B1	
	Must be seen i	n part (a)		
			(1)	
(b)	$8y^{2} - 9y + 1 = (8y - 1)(y - 1) = 0 \Rightarrow y = \dots$ or $(8(2^{x}) - 1)((2^{x}) - 1) = 0 \Rightarrow 2^{x} = \dots$	For attempting to solve the given equation as a 3 term quadratic in y or as a 3 term quadratic in 2^x leading to a value of y or 2^x (Apply usual rules for solving the quadratic – see general guidance) Allow x (or any other letter) instead of y for this mark e.g. an attempt to solve $8x^2 - 9x + 1 = 0$	M1	
	$2^{x}(\text{or }y) = \frac{1}{8}, 1$	Both correct answers of $\frac{1}{8}$ (oe) and 1 for 2^x or y or their letter but not x unless 2^x (or y) is implied later	A1	
	x = -3 x = 0	M1: A correct attempt to find one numerical value of x from their 2^x (or y) which must have come from a 3 term quadratic equation . If logs are used then they must be evaluated. A1: Both $x = -3$ and/or $x = 0$ May be implied by e.g. $2^{-3} = \frac{1}{8}$ and $2^0 = 1$ and no extra values.	M1A1	
			(4)	
			(5 marks)	

Question Number	Sch	neme	Marks
8(a)	$9x-4x^3 = x(9-4x^2)$ or $-x(4x^2-9)$	Takes out a common factor of x or $-x$ correctly.	B1
	$9-4x^2 = (3+2x)(3-2x)$ or $4x^2-9 = (2x-3)(2x+3)$	$9-4x^{2} = (\pm 3 \pm 2x)(\pm 3 \pm 2x) \text{ or}$ $4x^{2}-9 = (\pm 2x \pm 3)(\pm 2x \pm 3)$	M1
	$(1)_{24} = (1)_{24} $	b but allow equivalents e.g. $-3-2x$) $(-3+2x)$ or $-x(2x+3)(2x-3)$	A1
Note: 4x	$x^3 - 9x = x(4x^2 - 9) = x(2x - 3)(2x + 3)$ so	$9x-4x^3 = x(3-2x)(2x+3)$ would scor	e full marks
	Note: Correct work leading to $9x(1$	$(1-\frac{2}{3}x)(1+\frac{2}{3}x)$ would score full marks	
	Allow $(x \pm 0)$ or $(-x \pm 0)$	0) instead of x and -x	(0)
(b)		or \(\sqrt{1} \)	(3) M1
	<i>y</i> ↑	A cubic shape with one maximum and one minimum Any line or curve drawn	
		passing through (not touching) the origin	B1
	(-1.5,0) 0 (1.5,0) x	Must be the correct shape and in all four quadrants and pass through (-1.5, 0) and (1.5, 0) (Allow (0, -1.5) and (0, 1.5) or just -1.5 and 1.5 provided they are positioned correctly). Must	A1
		be on the diagram (Allow $\sqrt{\frac{9}{4}}$ for 1.5)	
-		,	(3)
(c)	A = (-2, 14), B = (1, 5)	B1: $y = 14$ or $y = 5$ B1: $y = 14$ and $y = 5$	B1 B1
	These must be s	een or used in (c) Correct use of Pythagoras including	
	$(AB =) \sqrt{(-2-1)^2 + (14-5)^2} (= \sqrt{90})$	the square root. Must be a correct expression for their A and B if a correct formula is not quoted	M1
	•	$+(14-5)^2$ scores M0.	
	However $AB = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$		
	$(AB =) 3\sqrt{10}$	cao	A1
			(4) (10 marks)
Special co	ase: Use of $4x^3 - 9x$ for the curve gives	s (-2 -14) and (1 -5) in part (c) Allow t	` ′

Question Number					Schei	me				Marks	
9.(a)	3200	00 = 1700	0+(k-1))×1500=	<i>⇒ k</i> =	in an atte formula answer.	2000 with a empt to find could be in	$\frac{1}{k}$. A complied by	rect	M1	
			(k =) 1	1		Cso (All	low n = 11)		A1	
	Accept correct answer only.										
	$32000 = 17000 + 1500k \implies k = 10 \text{ is M0A0 (wrong formula)}$ $\frac{32000 - 17000}{1500} = 10 : k = 11 \text{ is M1A1 (correct formula implied)}$										
	Li	isting: Al	l terms n	nust be li	sted up to	32000 aı	nd 11 corre	ctly iden	tified.		
					_		and 0 othe	-			
										(2)	
(b)		$S = \frac{k}{2}$		M1: $+(k-1)$	×1500) o	r	M1: Use of formula w	ith their	integer		
		_	(17000+) 1500)		n = k or k where $3 < 1$	k < 20 as	a = a		
				,)×1500) o	or	17000 and below for				
		<u>k-</u> 2	$\frac{1}{2}(17000)$				using $n =$	_	case for	M1A1	
				A1:			using "			•	
	$S=\frac{1}{2}$	$\frac{11}{2}(2\times170)$			-	+32000)	A1: Any				
		$S = \frac{1}{2}$	$\frac{10}{2}(2\times170)$	$000+9\times1$	1500) or		simplified				
			$\frac{10}{2}(1700$	00 + 3050	00)		expression $n = 10$	n with n =	= 11 Or		
		(=	= 269 50	or 237	500)		n - 10				
			32000×	α		32000× and 3 <	α where α	γis an int	eger	M1	
		288 000 -	or			values. I	empts to active to active to active the second seco	lent upon s scored a	the two	JJM 1 A 1	
		$320\ 000 + 237\ 500 = 557\ 500$ be the sum of 20 terms i.e. $\alpha + k = 20$					ddM1A1				
		A1: 557 500									
	S	Special Case: If they just find S_{20} (£625 000) in (b) score the first M1 otherwise apply the scheme.									
	other wise appry the scheme.						(5)				
							(7 marks)				
	1				List	ing:					
n	1	2	3	4	5	6	7	8	9	10	
u_n 1	7000	18500	20000	21500	23000	24500	26000	27500	29000	30500	
n	11	12	13	14	15	16	17	18	19	20	
	32000	32000	32000	32000	32000	32000	32000 M's as abo	32000	32000	32000	

Look for a sum before awarding marks. Award the M's as above then A2 for 557 500 If they sum the 'parts' separately then apply the scheme.

Question Number		Scheme	Marks
10(a)	$f(x) = x^{\frac{3}{2}} - \frac{9}{2}x^{\frac{1}{2}} + 2x(+c)$	M1: $x^n \rightarrow x^{n+1}$ A1: Two terms in x correct, simplification is not required in coefficients or powers A1: All terms in x correct. Simplification not required in coefficients or powers and $+ c$ is not required	- M1A1A1
	Sub $x = 4$, $y = 9$ into $f(x) \Rightarrow c$	= M1: Sub $x = 4$, $y = 9$ into f (x) to obtain a value for c . If no + c then M0. Use of $x = 9$, $y = 4$ is M0.	M1
	$(f(x) =) x^{\frac{3}{2}} - \frac{9}{2} x^{\frac{1}{2}} + 2x + 2$	Accept equivalents but must be simplified e.g. $f(x) = x^{\frac{3}{2}} - 4.5\sqrt{x} + 2x + 2$ Must be all 'on one line' and simplified . Allow $x\sqrt{x}$ for $x^{\frac{3}{2}}$	A1
(1)			(5)
(b)	Gradient of normal is $-\frac{1}{2} \Rightarrow$ Gradient of tangent = +2	$\frac{2}{2}$ $\frac{dx}{dx}$	
	The A1 may be implied by $\frac{-1}{\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2} = -\frac{1}{2}$		
	$\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2 = 2 \Rightarrow \frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}}$	Sets the given $f'(x)$ or their $f'(x)$ = their changed m and not their m where m has come from $2y + x = 0$	M1
	$\times 4\sqrt{x} \Rightarrow 6x - 9 = 0 \Rightarrow x = \dots$	×4 \sqrt{x} or equivalent correct algebraic processing (allow sign/arithmetic errors only) and attempt to solve to obtain a value for x . If $f'(x) \neq 2$ they need to be solving a three term quadratic in \sqrt{x} correctly and square to obtain a value for x . Must be using the given $f'(x)$ for this mark.	M1
	$x = 1.5$ $x = \frac{3}{2} (1.5)$ Accept equivalents e.g. $x = \frac{9}{6}$ If any 'extra' values are not rejected, score A0.		A1 (5)
	$2 4\sqrt{x}$	$\frac{2}{\sqrt{x}} + \frac{4\sqrt{x}}{9} - \frac{1}{2} = -\frac{1}{2}$ etc. leads to the correct	(5)
	answer and could score N	M1A1M1M0(incorrect processing)A0	(101-)
			(10 marks)

Appendix 6(a)

	. ,		
	$(x^2+4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{dy}{dx} = \frac{2x(3x^2 - 6x + 4) - 2(x^3 - 3x^2 + 4x - 4)}{(2x)^2}$	M1: Correct application of quotient rule A1: Correct derivative	M1A1
Way 2 Quotient	$= \frac{4x^3}{4x^2} - \frac{6x^2}{4x^2} + \frac{24}{4x^2} = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	M1: Collects terms and divides by denominator. Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept 1x or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 .	ddM1A1
	$y = \left(\frac{x}{2} + \frac{2}{x}\right)(x-3)\operatorname{or}(x^2 + 4)\left(\frac{1}{2} - \frac{3}{2x}\right)$	Divides one bracket by $2x$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(x - 3\right) \left(\frac{1}{2} - \frac{2}{x^2}\right) + \left(\frac{x}{2} + \frac{2}{x}\right) \text{ or }$	M1: Correct application of product rule	M1A1
Way 3	$\frac{dy}{dx} = \left(x^2 + 4\right) \frac{3}{2x^2} + 2x \left(\frac{1}{2} - \frac{3}{2x}\right)$	A1: Correct derivative	
Product	$= \frac{3}{2} + \frac{6}{x^2} + x - 3 = x - \frac{3}{2} + \frac{6}{x^2}$	M1: Expands and collects terms. Dependent on both previous method marks.	ddM1A1
	oe e.g.	A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw	
	$\frac{2x^3 - 3x^2 + 12}{2x^2}$	Accept $1x$ or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 .	
	$(x^2+4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{dy}{dx} = (x^3 - 3x^2 + 4x - 12) \times -\frac{1}{2}x$ M1: Correct application of product	M1A1	
Way 4 Product	$\frac{dy}{dx} = -\frac{x}{2} + \frac{3}{2} - \frac{2}{x} + \frac{6}{x^2} + \frac{3x}{2}$ $ddM1: Expands and collects terms Dependential A1: x - \frac{3}{2} + \frac{6}{x^2} \text{ oe e.g.} \frac{2x^3 - 3x^2 + 12}{2x^2} \text{ and not} \frac{2x}{2} \text{ and not}$	ddM1A1	

	$y = \left(\frac{x}{2} + \frac{2}{x}\right)(x-3)\operatorname{or}\left(x^2 + 4\right)\left(\frac{1}{2} - \frac{3}{2x}\right)$	Divides one bracket by $2x$	M1
	$=\frac{x^2}{2}-\frac{3}{2}x+2-6x^{-1}$	M1: Expands	M1A1
	$=\frac{1}{2}-\frac{1}{2}x+2-6x$	A1: Correct expression	WIIAI
Way 5	$\frac{dy}{dx} = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	ddM1: $x^n \rightarrow x^{n-1}$ or $2 \rightarrow 0$ Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept $1x$ or even $1x^1$ but not $\frac{2x}{2}$ If they lose the previous A1 because of an incorrect constant only then allow recovery here for a correct derivative.	ddM1A1

	•
\	igexams.com
WW WW WW	IOEXAIDS COID
~~ ~~ ~~ .	Igonalliologili
	<u> </u>

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom