

Hips://hiishshidenhoomby. Aga. Neb. app.

Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

hilps: Ariishshidentoon, basha an Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022 Question Paper Log Number P66652A Publications Code WST01 01 2201 MS All the material in this publication is copyright © Pearson Education Ltd 2022

- hips oriishshdentoon bada web app
- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

	ti _{ths: [dir]}	ż.
1. (a)	$P(C') = \frac{103}{120}$ oe awrt 0.858	B Proon of
(b)	$P(A \cap B \cap C') = 0$	B1 (1)
(c)	$P(A \cup B \cup C') = \frac{9+3+2+5+1+93}{120} \text{ or } P(A \cup B \cup C') = 1 - \frac{7}{120}$ $= \frac{113}{120} \text{ oe} $ awrt 0.942	M1 A1 (2)
(d)	P(At most 1) = P(0 or 1) = $\frac{93+9+7+1}{120}$ or $\frac{120-2-5-3}{120}$ = $\frac{110}{120}$ oe awrt 0.917	M1 A1 (2)
(e)	$P(A \mid \text{At most 1}) = \frac{9/120}{"110/120}$	M1
	$=\frac{9}{110}$ oe awrt 0.0818	A1 (2)
(f)	$= \frac{9}{110} \text{ oe} $ awrt 0.0818 $\left[P(X=0) = \frac{93}{120} \right] P(X=1) = \frac{17}{120} P(X=2) = \frac{8}{120} P(X=3) = \frac{2}{120}$	M1
	$E(X) = \left[\frac{93}{120} \times 0\right] + \frac{17}{120} \times 1 + \frac{8}{120} \times 2 + \frac{2}{120} \times 3$	M1
	$=\frac{13}{40}$ or 0.325 oe	A1 (3)
	Notes	[11]
(a) (b) (c)	B1 (allow awrt 0.858) B1 cao condone $0/120$ but do not allow other denominators M1 for either correct expression for $P(A \cup B \cup C')$ A1 o.e. (allow awrt 0.942)	
(d)	M1 correct expression A1 $\frac{11}{12}$ o.e. (allow awrt 0.917)	
(e)	M1 follow through their part (d) if num < denom eg $\frac{m/120}{"110/120"}$ or if the fraction in (d)	has
(f)	denominator of 120 $\frac{m}{\text{"their }110\text{"}}$ where $0 < m < \text{their }110$ Allow $\frac{n}{120-3-2-5}$ or $\frac{n}{110}$ $0 < n < 110$ A1 o.e. (allow awrt 0.0818) 1st M1 for the probability distribution of X (condone missing $P(X=0)$) awrt 0.14 awrt 0.06 awrt 0.017 May be implied by a correct expression for $E(X)$. At least 2 correct must be ass with the correct x value	67 and
	2^{nd} M1 correct follow through expression for E(X) ft their probabilities and X values A1 Dep on both previous method marks being awarded. Working must be checked. A correct answer with no working scores 3/3 SC P(X = 17) = 17/120 (awrt 0.14) P(X = 8) = 8/120 (awrt 0.067) P(X = 14) = 14/120 (awrt 0.067) P(X	nwrt 0.12)

Q	uestion	Sahama	Marks
N	lumber	Scheme	warks

		h _{thos://httis:}
2. (a)	$S_{dp} = 5240.8 - \frac{1029 \times 50.8}{10} [= 13.48]$ $r = \frac{'13.48'}{\sqrt{344.9 \times 0.576}}$	M1 M1 MANAGAR
	$r = \frac{13.48}{\sqrt{344.9 \times 0.576}}$	M1
	= 0.9563834526 awrt 0.956	A1 (3)
(b)(i)	w = 50 - p	B1
(ii)	-1	B1
		(2)
(c)	-0.956	B1ft
		(1)
		[6]
	Notes	
(a)	1^{st} M1 correct expression for S_{dp}	
	2^{nd} M1 valid attempt at r with their S_{dp} not equal to 5240.8 and the correct denomination	nator
	A1 awrt 0.956	
(b)(i)	B1 allow equivalent rearrangements	
(ii)	B1 – 1 cao	
(c)	B1ft follow through $-1 \times their(a)$ providing $-1 < their(a) < 1$	

• ()	1	ĺ	Cish _{sh}	
3. (a)	lower quartile = 116 upper quartile = 125		B1 M1 A1*cso	3
	"125" + 1.5 × ("125" – "116") or "125" + 1.5 × (9)		M1	10 bx
	Outlier is greater than 138.5, so $c = 9*$		A1*cso	
	06			(3)
(b)	$\bar{x} = \frac{-96}{24} [= -4]$ $\sum d = 125 \times 24 - 96 [= 2904]$		M1	
	$\overline{x} = \frac{-96}{24} [= -4]$ $\overline{d} = '\overline{x}' + 125$ $\sum d = 125 \times 24 - 96 [= 2904]$ $\overline{d} = \frac{"2904"}{24}$		M1	
	\overline{d}	=121	A1	
				(3)
(c)	$\left[\sigma_x = \sigma_d\right] = \sqrt{\frac{1306}{24}}$		M1	
	$\left[\sigma_{d}\right] = 7.3767 \text{awr}$	t <u>7.38</u>	A1	
				(2)
(d)	$ [P(D > 118 X < 0)] = \frac{P(118 < D < 125)}{P(D < 125)} \text{ or } \frac{P(-7 < X < 0)}{P(X < 0)} \text{ or } \frac{\frac{5}{24}}{\frac{14}{24}} $		M1	
	$=\frac{5}{14}$		A1	
				(2)
			[10]	. /
-	Notes			
(a)	R1 both values correct Roth values must be seen either in the calculation or see	norotals	Thomas	not

(a) B1 both values correct. Both values must be seen either in the calculation or separately. They are not implied by the IQR = 9

M1 use of $Q_3 + 1.5 \times IQR$ with their values. May be implied by 138.5 if B1 awarded A1*cso for 138.5 and conclusion c = 9 (do not accept c = 139) with no errors. Answer is given so working must be shown.

(b) 1^{st} M1 for correct expression for \overline{x}

 2^{nd} M1 use of $\overline{d} = '\overline{x}' + 125$

 1^{st} M1 for correct expression for $\sum d$ 2^{nd} M1 use of " $\sum d$ " \div 24 must be clear it is their sum

A1 121

NB condone no labelling or incorrect labelling throughout part(b)

- (c) M1 correct expression $\sqrt{\frac{1306}{24}}$
 - A1 awrt 7.38 final answer
- (d) M1 correct probability statement (allow a probability of $\frac{k}{14}$ where 0 < k < 14 to score M1) A1 allow awrt 0.357

		Marks
Question Number	Scheme	Marks
4. (a)	$\frac{2}{5}$	B1 (1)
(b)	E(W) = 3 E(5-2W) = 5-2E(W) E(X) = -1	B1 M1 A1 (3)
(c)	$P(X < W) = P(5 - 2W < W) = P(W > \frac{5}{3}) \text{ or } P(W \ge 2)$	M1
	$=\frac{4}{5}$	A1 (2)
(d)(i)	$[y] 1 \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5}$ $[p] \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5}$	B1
(ii)	$E(Y) = \frac{1}{5} \left(1 + \frac{1}{2} \dots + \frac{1}{5} \right) \text{ or } \frac{1}{5} + \frac{1}{10} + \frac{1}{15} + \frac{1}{20} + \frac{1}{25} \left[= \frac{137}{300} = 0.4566 \dots \right]$	M1
	$E(Y^{2}) = \frac{1}{5} \left(1^{2} + \left(\frac{1}{2} \right)^{2} + \dots + \left(\frac{1}{5} \right)^{2} \right) \text{ or } \frac{1}{5} + \frac{1}{20} + \frac{1}{45} + \frac{1}{80} + \frac{1}{125} \left[= \frac{5269}{18000} = 0.2927 \right]$	M1
	$Var(Y) = '0.2927' - ('0.4566')^2$ awrt 0.0842	M1 A1 (5)
(e)	$Var(2-3Y) = (-3)^2 Var(Y)$ awrt <u>0.758</u>	M1 A1ft (2)
(a)	Notes B1 oe	[13]
(b)		
(c)	A1 cao and labelled E(X) M1 for identifying $W > \frac{5}{3}$ or $W \ge 2$ eg $1 - P(W = 1) \ge 2$ or $1 - P(W \le 1) \ge 2$	
(d)(i) (ii)	A1 oe B1 Correct distribution (probabilities may be implied by correct use). May be seen in any M1 attempt at expression for E(Y) using their values of y and p (at least 2 terms seen) of (0.45 if have 0.3 rather than 1/3) Condone incorrect labelling	or awrt 0.457
	M1 attempt at expression for $E(Y^2)$ using their values of y and p (at least 2 terms seen) (0.2885 if have 0.3 rather than 1/3) Condone incorrect labelling M1 For use of " $E(Y^2)$ " – (" $E(Y)$ ") ² fit their values for $E(Y^2)$ and $E(Y)$	or awrt 0.293
	A1 awrt 0.0842 or $\frac{947}{11250}$	
(e)	M1 for use of $(-3)^2 \text{Var}(Y)$ with their $\text{Var}(Y) > 0$ condone $(3)^2 \text{Var}(Y)$ A1ft $\frac{947}{1250}$ or $9 \times$ "their part (d) > 0" evaluated correctly to 3sf or exact fraction	

		Marks M1
Question Number	Scheme	Marks
5. (a)	$P(X < 37) = P\left(Z < \frac{37 - 40}{2.4}\right) = P(Z < -1.25)$	M1
	= 1 - 0.8944 ; $= 0.105649$ awrt <u>0.106</u>	M1; A1 (3)
(b)	P(one value is greater than 32) = $\sqrt{0.16}$ [=0.4]	M1
	$\frac{32-m}{2.4} = 0.2533$	M1 B1
	m = 31.392 awrt <u>31.4</u>	A1 (4)
(c)	$P(Y<0) = P\left(Z < \frac{0-4}{8}\right) = P\left(Z < -0.5\right) [= 0.3085]$	M1
	Let X be the number of negative values	
	$P(X \ge 1) = 1 - P(X = 0)$ oe	M1
	$= 1 - (0.6915)^{5}$ $= 0.84188$ awrt 0.842	M1 A1
		[11]
	Notes	
(a)	1st M1 standardising 37 (or 43) with 40 and 2.4 (allow \pm) 2nd M1 for $1-p$ (where $0.88) Implied by correct answer.A1 for awrt 0.106 (calc. 0.105649)$	
(b)	1 st M1 correct expression for one value > 32 (may be implied by sight of 0.2533 All between 0.25 and 0.26 inclusive)	ow any value
	2^{nd} M1 standardising 32 with m and 2.4 and setting equal to z value $0.2 < z < 0.3$	

B1 for $z = \pm 0.2533$ or better (calc gives 0.2533470931...) used in a linear equation for m

 2^{nd} M1 realising they need to find 1 - P(X = 0) ie writing or using 1 - P(no negative values) oe

[using 0.16]Allow M0M1 B0 A0 for $\frac{32-m}{2.4} = z$ where $0.99 \le |z| < 1.04$

1st M1 standardising 0 with 4 and 8 (allow \pm) or seeing 0.3085 or 0.6915

awrt 0.842 (tables: 0.8418894... calculator: 0.84193233....)

and get 0.125 then award M1M1M0A0

and get 0.842 full marks.

otherwise send to Review

May be implied by $1 - p^5$ 0

 3^{rd} M1 use of $1-p^5$ where p is 1—"their $P\left(Z < \frac{0-4}{8}\right)$ "

awrt 31.4 or better

NB If they use Binomial

(c)

A1

uestion lumber		Scheme	Marks
6. (a)	$\overline{f} = 10.8 + 0.748\overline{p} = 10.8 + 0.748(62.$	4) awrt <u>57.5</u>	MI AI
(b)	For each additional <u>mark</u> scored on the <u>increases</u> by 0.748	<u>pre-test</u> , the average <u>mark</u> on the <u>final exam</u>	B1 (1)
(c)	The statement is not reliable as there is	no data below 19 (extrapolation).	B1 (1)
(d)	76		B1 (1)
(e)	p < 10.8 + 0.748 p		M1
	0.252 p < 10.8		M1
		$p < \text{awrt } \underline{42.9}$	A1 (3)
(f)	[No change to] $S_{pp} = 15573.76$		
	$\sum pf = 133486 - 2842 + 9016$ [=139660]	$\sum pf$ increases by $98(92-29)[=6174]$	M1
	$\sum f = "57.47" \times 34 + (92 - 29)$ or		
		$\frac{\sum_{p}\sum_{f} f \text{ increases by } \frac{2120(92-29)}{34}$	
	$\frac{133486 - 11648.35}{2120} \times 34 + (92 - 29)$	$\frac{2}{n}$ increases by $\frac{2}{34}$	M1
		[= 3928.235]	
	$[=1954 + 92 - 29 \approx 2017]$		
	$S_{pf} = "139660" - \frac{2120 \times "2017"}{34}$	G : 1 (6174) (2020 225)	
	J T	S _{pf} increases by '6174' - '3928.235'	dM1
	[=	[=2245.764]	
	$b = \frac{"13894"}{[= 0.89]}$	$b = \frac{11648.35 + "2245.764"}{}$	
	$b = \frac{15573.76}{15573.76}$ [= 0.89]	$b = \frac{15573.76}{15573.76}$	M1
		awrt <u>0.9</u>	A1 (5)
		Notes	[13]
(a)		Notes sion equation. Allow answer between 57 and 58	[13]
	A1 awrt 57.5	sion equation. Allow answer between 57 and 58	
(a) (b)	A1 awrt 57.5 B1 must include context and reference		a multiple
(b)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equivexam or final for final exam	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or alent words eg score/ point for mark, pre or test for	a multiple
(b) (c)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equiveram or final for final exam B1 Not reliable with correct supporting	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or	a multiple
(b) (c) (d)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equiver exam or final for final exam B1 Not reliable with correct supporting B1 76 cao	to 0.748 Needs to refer to each mark being 0.748 or ralent words eg score/ point for mark, pre or test for reason eg it (10.8)is an outlier, outside the range	a multiple pre-test,
(b) (c)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equivexam or final for final exam B1 Not reliable with correct supporting B1 76 cao 1st M1 for setting up inequality in p onl	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or alent words eg score/ point for mark, pre or test for reason eg it (10.8) is an outlier, outside the range y or for drawing the line $f = p$ on the graph. May be	a multiple pre-test,
(b) (c) (d)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equivexam or final for final exam B1 Not reliable with correct supporting B1 76 cao 1st M1 for setting up inequality in p onlow by $p < n$ (ignore any lower limit	to 0.748 Needs to refer to each mark being 0.748 or ralent words eg score/ point for mark, pre or test for reason eg it (10.8)is an outlier, outside the range	a multiple pre-test,
(b) (c) (d)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equive exam or final for final exam B1 Not reliable with correct supporting B1 76 cao 1st M1 for setting up inequality in p onl by p < n (ignore any lower limit Allow trial and improvement.	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or alent words eg score/ point for mark, pre or test for reason eg it (10.8) is an outlier, outside the range y or for drawing the line $f = p$ on the graph. May be t) where $40 \le n \le 46$ (allow incorrect inequality signature)	a multiple pre-test, implied gn or =)
(b) (c) (d)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equivexam or final for final exam B1 Not reliable with correct supporting B1 76 cao 1st M1 for setting up inequality in p onlow $p < n$ (ignore any lower limitable Allow trial and improvement. 2nd M1 rearranging to the form $ap < b$ with the setting $ap < ap$ with the setting a	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or alent words eg score/ point for mark, pre or test for reason eg it (10.8) is an outlier, outside the range y or for drawing the line $f = p$ on the graph. May be t) where $40 \le n < 46$ (allow incorrect inequality sign. Allow $(1-0.748) p < 1$	a multiple pre-test, implied gn or =)
(b) (c) (d)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equivexam or final for final exam B1 Not reliable with correct supporting B1 76 cao 1st M1 for setting up inequality in p onlow by $p < n$ (ignore any lower limitable Allow trial and improvement. 2nd M1 rearranging to the form $ap < b$ was May be implied by $p < n$ (ignore	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or alent words eg score/ point for mark, pre or test for reason eg it (10.8) is an outlier, outside the range y or for drawing the line $f = p$ on the graph. May be the where $40 \le n \le 46$ (allow incorrect inequality signature any lower limit) where $42 \le n \le 44$	a multiple pre-test, implied gn or =)
(b) (c) (d) (e)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equivexam or final for final exam B1 Not reliable with correct supporting B1 76 cao 1st M1 for setting up inequality in p onlow by $p < n$ (ignore any lower limitable Allow trial and improvement. 2nd M1 rearranging to the form $ap < b$ was May be implied by $p < n$ (ignore A1 $p < a$ wort 42.9 (ignore any lower limitable).	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or ralent words eg score/ point for mark, pre or test for reason eg it (10.8) is an outlier, outside the range y or for drawing the line $f = p$ on the graph. May be t) where $40 \le n < 46$ (allow incorrect inequality sign. Allow $(1-0.748) p < 10$ re any lower limit) where $42 < n < 44$ nit) ISW	a multiple pre-test, implied gn or =)
(b) (c) (d)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equivexam or final for final exam B1 Not reliable with correct supporting B1 76 cao 1st M1 for setting up inequality in p onlow by $p < n$ (ignore any lower limitable Allow trial and improvement. 2nd M1 rearranging to the form $ap < b$ was May be implied by $p < n$ (ignore A1 $p < a$ with 42.9 (ignore any lower limitable). 1st M1 Correct method to find new $\sum p$	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or ralent words eg score/ point for mark, pre or test for reason eg it (10.8) is an outlier, outside the range y or for drawing the line $f = p$ on the graph. May be t) where $40 \le n < 46$ (allow incorrect inequality sign. Allow $(1-0.748) p < 10$ re any lower limit) where $42 < n < 44$ ant) ISW of or change in $\sum pf$	a multiple pre-test, implied gn or =)
(b) (c) (d) (e)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equivexam or final for final exam B1 Not reliable with correct supporting B1 76 cao 1st M1 for setting up inequality in p onlow by $p < n$ (ignore any lower limitable Allow trial and improvement. 2nd M1 rearranging to the form $ap < b$ was May be implied by $p < n$ (ignore A1 $p < a$ with 42.9 (ignore any lower limitable). 1st M1 Correct method to find new $\sum p$	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or ralent words eg score/ point for mark, pre or test for reason eg it (10.8) is an outlier, outside the range y or for drawing the line $f = p$ on the graph. May be t) where $40 \le n < 46$ (allow incorrect inequality sign. Allow $(1-0.748) p < 10$ re any lower limit) where $42 < n < 44$ nit) ISW	a multiple pre-test, implied gn or =)
(b) (c) (d) (e)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equivexam or final for final exam B1 Not reliable with correct supporting B1 76 cao 1st M1 for setting up inequality in p onlow by $p < n$ (ignore any lower limitable Allow trial and improvement. 2nd M1 rearranging to the form $ap < b$ was May be implied by $p < n$ (ignore A1 $p < a$ wort 42.9 (ignore any lower limitable) a which is M1 Correct method to find new a and a with M1 Correct method to find new a and M1 Correct method t	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or ralent words eg score/ point for mark, pre or test for reason eg it (10.8) is an outlier, outside the range y or for drawing the line $f = p$ on the graph. May be t) where $40 \le n < 46$ (allow incorrect inequality sign. Allow $(1-0.748) p < 16$ or change in $\sum pf$ or change in $\sum pf$ Allow 2018 or 2017	a multiple pre-test, implied gn or =)
(b) (c) (d) (e)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equiverance exam or final for final exam B1 Not reliable with correct supporting B1 76 cao 1st M1 for setting up inequality in p only by $p < n$ (ignore any lower limit Allow trial and improvement. 2nd M1 rearranging to the form $ap < b$ with May be implied by $p < n$ (ignore A1 $p < awrt 42.9$ (ignore any lower limit 1st M1 Correct method to find new $\sum p$ 2nd M1 Correct method to find new $\sum p$ 3rd dM1 dep on both previous method retheir changed $\sum pf$ and $\sum f$ or change the form f and f or change f and f and f or change f and f or change f and f and f or change f and f and f or f or f and f and f are f and f and f are f are f and	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or ralent words eg score/ point for mark, pre or test for reason eg it (10.8) is an outlier, outside the range by or for drawing the line $f = p$ on the graph. May be to where $40 \le n < 46$ (allow incorrect inequality sign. Allow $(1-0.748) p < 10$ for change in $\sum pf$ or change in $\sum pf$ Allow 2018 or 2017 marks being awarded. Correct method to find new See in S_{pf}	a multiple pre-test, implied gn or =)
(b) (c) (d) (e)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equiverance exam or final for final exam B1 Not reliable with correct supporting B1 76 cao 1st M1 for setting up inequality in p only by $p < n$ (ignore any lower limit Allow trial and improvement. 2nd M1 rearranging to the form $ap < b$ with May be implied by $p < n$ (ignore A1 $p < awrt 42.9$ (ignore any lower limit 1st M1 Correct method to find new $\sum p$ 2nd M1 Correct method to find new $\sum p$ 3rd dM1 dep on both previous method retheir changed $\sum pf$ and $\sum f$ or change the form f and f or change f and f and f or change f and f or change f and f and f or change f and f and f or f or f and f and f are f and f and f are f are f and	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or ralent words eg score/ point for mark, pre or test for reason eg it (10.8) is an outlier, outside the range by or for drawing the line $f = p$ on the graph. May be to where $40 \le n < 46$ (allow incorrect inequality sign. Allow $(1-0.748) p < 10$ for change in $\sum pf$ or change in $\sum pf$ Allow 2018 or 2017 marks being awarded. Correct method to find new See in S_{pf}	a multiple pre-test, implied gn or =)
(b) (c) (d) (e)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equiverance exam or final for final exam B1 Not reliable with correct supporting B1 76 cao 1st M1 for setting up inequality in p only by $p < n$ (ignore any lower limit Allow trial and improvement. 2nd M1 rearranging to the form $ap < b$ with May be implied by $p < n$ (ignore A1 $p < awrt 42.9$ (ignore any lower limit 1st M1 Correct method to find new $\sum p$ 2nd M1 Correct method to find new $\sum p$ 3rd dM1 dep on both previous method retheir changed $\sum pf$ and $\sum f$ or change the form f and f or change f and f and f or change f and f or change f and f and f or change f and f and f or f or f and f and f are f and f and f are f are f and	sion equation. Allow answer between 57 and 58 to 0.748 Needs to refer to each mark being 0.748 or ralent words eg score/ point for mark, pre or test for reason eg it (10.8) is an outlier, outside the range y or for drawing the line $f = p$ on the graph. May be t) where $40 \le n < 46$ (allow incorrect inequality sign. Allow $(1-0.748) p < 10$ re any lower limit) where $42 < n < 44$ nit) ISW of or change in $\sum_{n=0}^{\infty} \frac{1}{n}$ Allow 2018 or 2017 marks being awarded. Correct method to find new S	a multiple pre-test, implied gn or =)

	Apple 1	Thritishery .
Question Number	Scheme	Marks
	$P(X=3) = F(3) - F(2) = \frac{1}{38}$	M1 JANO
	$P(X=3) = \frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2}$	M1
	$\frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2} = \frac{1}{38} \to n(n-1)(n-2) = 7980 $ (*)	M1 A1cso
(b)	$21 \times 20 \times 19 = 7980$	B1cso (4)
	14 12 12	(1)
(c)	$a = F(0) = P(X = 0) = \frac{14}{21} \times \frac{13}{20} \times \frac{12}{19}$	M1
	$a = \frac{26}{95}$	A1
	$P(X=1) \ \ 3 \times \frac{14}{21} \times \frac{13}{20} \times \frac{7}{19} \left[= \frac{91}{190} \right] \text{ or } P(X=2) \ \ 3 \times \frac{7}{21} \times \frac{6}{20} \times \frac{14}{19} \left[= \frac{21}{95} \right]$	M1 M1
	$b = F(1) = P(X=0) + P(X=1) = \frac{26}{95} + \frac{91}{190} \text{ or } b = \frac{37}{38} - \frac{21}{95}$	dM1
	$b = \frac{143}{190}$	A1
		(6) [11]
	Notes	
(a)	1st M1 for use of F(3) – F(2) Accept $\frac{1}{38}$ 2nd M1 product of 3 probabilities where the denominators are n , $(n-1)$ and $(n-2)$ and the numerators are decreasing k , $(k-1)$ and $(k-2)$ This may be seen as a single term in a longer expression. 3rd M1 setting up equation for P($X = 3$) = product of correct 3 probabilities without replacement A1cso fully correct solution with no errors seen	
(b)	B1cso correctly evaluated product. Allow $21(21-1)(21-2) = 7980$	
(c)	be implied by $\frac{26}{95}$	
	1st A1 $a = \frac{26}{95}$ oe must be clear this is the value for a 2nd M1 product of 3 probabilities for P(X=1) or P (X=2) or $\frac{91}{190}$ or $\frac{91}{570}$ or $\frac{21}{95}$ or $\frac{7}{95}$ oe seen. Condone incorrect labelling. The three probabilities can be in any arrangement 3rd M1 × 3 or adding the 3 sets of the 3 fractions or $\frac{91}{190}$ or $\frac{21}{95}$ Condone incorrect labelling	
	4 th dM1 their $P(X=0)$ + their $P(X=1)$ or $F(2) - P(X=2)$ (dep on 2 nd M1 being scored) 2 nd A1 $b = \frac{143}{190}$ oe must be clear this is the value for b	
	NB if $a = 0.273$ and $b = 0.7526$ implies the method marks.	

hips: Abilists tide through the Note also