

Mark Scheme (Results)

October 2020

Pearson Edexcel IAL In Mechanics 1 Paper WME01/01

# **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.edexcel.com">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

# Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

October 2020
Publications Code WME01\_01\_2010\_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

## **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### **EDEXCEL IAL MATHEMATICS**

## **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
  - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
  - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
  - **B** marks are unconditional accuracy marks (independent of M marks)
  - Marks should not be subdivided.
  - 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

## **General Principles for Mechanics Marking**

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of q = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.

N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.

Marks must be entered in the same order as they appear on the mark scheme.

- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

M(A) Taking moments about A

N2L Newton's Second Law (Equation of Motion)

NEL Newton's Experimental Law (Newton's Law of Impact)

HL Hooke's Law

SHM Simple harmonic motion

PCLM Principle of conservation of linear momentum

RHS, LHS Right hand side, left hand side

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks   |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1(a)               | $P(m) \xrightarrow{Q} Q(2m)$ $Q(2m)$ $Q($ |         |
|                    | $V 	 4v$ $CLM: 4mu + 2mu = mv + 2m \times 4v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1 A1   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
|                    | $4v = \frac{8u}{3}  (2.7u \text{ or better})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3)     |
| (b)                | $\pm m(v-4u)$ <b>OR</b> $\pm 2m(4v-u)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1 A1ft |
|                    | $\frac{10mu}{3}  (3.3mu \text{ or better})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3)     |
| (c)                | Opposite to the direction of motion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1 (1)  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1)     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (7)     |
|                    | Notes for Question 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|                    | M1 Correct number of terms, dimensionally correct, condone sign errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| <b>1(a)</b>        | Allow even if they assume that both are moving with the same speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                    | after the collision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|                    | A1 Correct equation, allow cancelled <i>m</i> 's or consistent extra <i>g</i> 's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|                    | A1 Correct answer (must be positive as it's a speed) and a single term.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 1(b)               | M1 Dimensionally correct imp-momentum equation (M0 if $g$ is included), with correct terms, condone sign errors, but must be a difference of momenta and must be using  EITHER $m$ and $4u$ and their $v_P$ OR $2m$ and $u$ and their $v_Q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|                    | A1ft Correct expression, in terms of m and u, follow their $v_P$ or $v_Q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
|                    | A0ft if they assume that both move with the same speed after the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|                    | collision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
|                    | A1 cao Must be positive as it's a magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 1(c)               | B1 Any clear equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |

| Complete method to find the <u>total</u> time:<br>e.g. $-19.6 = 14.7t + \frac{1}{2}(-9.8)t^2$ using one equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
| OR:<br>$0 = 14.7 - 9.8t_1 \implies t_1 = 1.5$<br>$s_1 = 14.7 \times 1.5 - \frac{1}{2} \times 9.8 \times 1.5^2 = 11.025$<br>using four equations<br>$30.625 = \frac{1}{2} \times 9.8 \times t_2^2 \implies t_2 = 2.5$<br>$t = t_1 + t_2 = 4$ (s)<br>and many other methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1                                     |
| There are two A marks for all the equations they use, -1 each error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1<br>M(A)1                            |
| t = 4 (s) only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1 (4)                                 |
| $\frac{1}{100} \frac{1}{100} \frac{1}$ | (4)                                    |
| <b>(b)</b> $v^2 = 14.7^2 + 2(-9.8)(-19.6)$ <b>OR</b> $v = 14.7 + (-9.8) \times 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1 A1                                  |
| Speed = $24.5 \text{ or } 25 \text{ (m s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1 (2)                                 |
| () 02 14 72 + 2( 0.9) 24 52 2 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3)                                    |
| (c) e.g $0^2 = 14.7^2 + 2(-9.8)s$ or $24.5^2 = 2 \times 9.8s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                                     |
| s = 11.025 (11 or better) $s = 30.625$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1                                     |
| Total distance = $2 \times 11.025 + 19.6$ Total distance = $2 \times 30.625 - 19$ .<br>= $41.7 (3 \text{ sf}) \text{ or } 42 (2 \text{ sf}) \text{ (m)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 M1<br>A1                             |
| = 41.7 (3 SI) 01 42 (2 SI) (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (4)                                    |
| v A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1 line                                |
| (d) 14.7 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1 start pt (0,14.7) <b>OR</b> on axes |
| -24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1ft end pt (4,-24.5) OR on axes       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3)                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (14)                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |

|             | Notes for Question 2                                                                      |  |
|-------------|-------------------------------------------------------------------------------------------|--|
| 2(a)        | M1 Complete method to find the total time                                                 |  |
|             | A1                                                                                        |  |
|             | M(A)1 There are now two A marks for the equation(s) that they use,                        |  |
|             | -1 for each error.                                                                        |  |
|             | A1 Correct answer                                                                         |  |
|             | <b>N.B.</b> If using a quadratic, ignore the other solution, even if it's                 |  |
|             | incorrect.                                                                                |  |
|             | If they combine the 2 solutions in some way, A0                                           |  |
| 2(b)        | M1 Complete method to find the speed                                                      |  |
|             | A1 Correct equation(s)                                                                    |  |
|             | A1 Correct answer must be positive                                                        |  |
| 2(c)        | M1 Method to find a relevant distance                                                     |  |
|             | A1 A correct relevant distance                                                            |  |
|             | M1 Method to find the total distance                                                      |  |
|             | A1 Correct answer                                                                         |  |
| 2(1)        | B1 Straight line starting on the <i>v</i> -axis and crossing the <i>t</i> -axis (line may |  |
| <b>2(d)</b> | be reflected in the <i>t</i> -axis) (B0 if solid vertical line at $t = 4$ )               |  |
|             | B1 Correct appropriate coordinates (start point)                                          |  |
|             | Allow these to be marked on the axes.                                                     |  |
|             | B1ft Correct appropriate coordinates (end point) ft on their answers to                   |  |
|             | (a) and (b)                                                                               |  |
|             | Allow these to be marked on the axes.                                                     |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |
|             |                                                                                           |  |

| Question<br>Number | Scheme                                                                    | Mark | (S  |
|--------------------|---------------------------------------------------------------------------|------|-----|
| 3(a)               | $R = 10g\cos\alpha$                                                       | M1   |     |
|                    | = 78.4  or  78  (N)                                                       | A1   |     |
|                    |                                                                           |      | (2) |
| (b)                | F = 0.5R                                                                  | B1   |     |
|                    | $P = 10g\sin\alpha + F$                                                   | M1A1 |     |
|                    | = 98                                                                      | A1   |     |
|                    |                                                                           |      | (4) |
| (c)                | $P = 10g\sin\alpha - F$                                                   | M1   |     |
|                    | = 19.6 or 20                                                              | A1   |     |
|                    |                                                                           |      | (2) |
|                    |                                                                           |      | (8) |
|                    |                                                                           |      |     |
|                    | Notes for Question 3                                                      |      |     |
| 3(a)               | M1 Allow sin/cos confusion                                                |      |     |
|                    | A1 Correct answer. Allow 8g.                                              |      |     |
| 3(b)               | B1 $F = 0.5R$ seen anywhere                                               |      |     |
|                    | M1 Correct number of terms, with 10g resolved                             |      |     |
|                    | A1 Correct equation or inequality                                         |      |     |
|                    | A1 Correct answer. Allow 10g.                                             |      |     |
|                    | For any inequality which never becomes an equation, usual rules:          |      |     |
|                    | Max M1A1A0 for $P \le 10g \sin \alpha + F$                                |      |     |
| 3(c)               | M1 Correct number of terms, with 10g resolved                             |      |     |
|                    | A1 Correct answer. Allow 2g                                               |      |     |
|                    | For any inequality which never becomes an equation, usual rules: Max M1A0 |      |     |

| Question<br>Number | Scheme                                                                                                                   | Marks       |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| 4.                 |                                                                                                                          |             |  |  |
|                    | $T_1$ $T_2 = 0$                                                                                                          |             |  |  |
|                    | <b>↑</b>                                                                                                                 |             |  |  |
|                    | 1.875m 0.625m 3.5m 2m                                                                                                    |             |  |  |
|                    |                                                                                                                          |             |  |  |
|                    | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                     |             |  |  |
|                    | 64g $Mg$                                                                                                                 |             |  |  |
|                    |                                                                                                                          |             |  |  |
|                    | Use of $T_2 = 0$                                                                                                         | M1          |  |  |
|                    | $M(C)$ , $64g \times 0.625 = Mg(d-2.5)$ <b>OR e.g.</b> $M(C)$ , $64g \times 0.625 = Mgx$                                 | M1 A1       |  |  |
|                    | Other equations: ( $T_1$ would then have to be eliminated to give an equation in $M$ and $d$ only, to earn the $M$ mark) |             |  |  |
|                    | $T_1 = Mg + 64g$                                                                                                         |             |  |  |
|                    | $M(A)$ , 64 $g \times 1.875 + Mgd = 2.5T_1$                                                                              |             |  |  |
|                    | $M(G)$ , $64g \times (d-1.875) = T_1 \times (d-2.5)$                                                                     |             |  |  |
|                    | $M(D)$ , $64g \times 4.125 + Mg(6-d) = 3.5T_1$                                                                           |             |  |  |
|                    | $M(B)$ , $64g \times 6.125 + Mg(8-d) = 5.5T_1$                                                                           |             |  |  |
|                    | $M(X), Mg(d-1.875) = 0.625T_1$                                                                                           |             |  |  |
|                    | $M(X), Mg(u-1.8/3) = 0.023I_1$                                                                                           |             |  |  |
|                    | $S_1 = 0$ $S_2$                                                                                                          |             |  |  |
|                    | <b>↑</b>                                                                                                                 |             |  |  |
|                    | 2.5m 3.5m 1.5m 0.5m                                                                                                      |             |  |  |
|                    |                                                                                                                          |             |  |  |
|                    | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                                                       |             |  |  |
|                    | Mg 48 $g$                                                                                                                |             |  |  |
|                    | ing 40g                                                                                                                  |             |  |  |
|                    | Use of $S_1 = 0$                                                                                                         | M1          |  |  |
|                    | $M(D)$ , $48g \times 1.5 = Mg(6-d)$ <b>OR e.g.</b> $M(D)$ , $48g \times 1.5 = Mg(3.5-x)$                                 | M1 A1       |  |  |
|                    | Other equations: ( $S_2$ would then have to be eliminated to give an                                                     |             |  |  |
|                    | equation in $M$ and $d$ only, to earn the $M$ mark) $S_2 = Mg + 48g$                                                     |             |  |  |
|                    | $M(A),48g \times 7.5 + Mgd = 6S_2$                                                                                       |             |  |  |
|                    | $M(C)$ , $48g \times 5 + Mg(d - 2.5) = 3.5S_2$                                                                           |             |  |  |
|                    | $M(G)$ , $48g \times (7.5-d) = S_2 \times (6-d)$                                                                         |             |  |  |
|                    | $M(B)$ , $48g \times 0.5 + Mg(8-d) = 2S_2$                                                                               |             |  |  |
|                    | $M(S)$ , $A \circ g \times 0.5 + Mg(8 - a) - 2S_2$<br>$M(Y)$ , $Mg(7.5 - d) = 1.5S_2$                                    |             |  |  |
|                    | $M(T), Mg(T.3-u) = 1.33_2$ Solve for $M$                                                                                 | <b>DM</b> 1 |  |  |
|                    | M = 32 exact answer.                                                                                                     | Al          |  |  |
|                    |                                                                                                                          | (8)         |  |  |
|                    |                                                                                                                          | (8)         |  |  |

| Notes for Question 4                                                         |  |
|------------------------------------------------------------------------------|--|
| M1 $T_2 = 0$ seen or implied                                                 |  |
| M1 Correct number of terms, dimensionally correct equation in M and          |  |
| one unknown length. (allow without g's, omission of a length is an M         |  |
| error)                                                                       |  |
| A1 Correct equation in <i>M</i> and <i>d only</i> or another unknown length. |  |
| M1 $S_1 = 0$ seen or implied                                                 |  |
| M1 Correct number of terms, dimensionally correct equation in M and          |  |
| same unknown length. (allow without g's, omission of a length is an M        |  |
| error)                                                                       |  |
| A1 Correct equation in M and d only or same unknown length.                  |  |
| <b>DM</b> 1 Solving for M, dependent on all previous M marks                 |  |
| A1 Correct exact answer                                                      |  |

| Question<br>Number | Scheme                                                                                                                                                  | Marks |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 5(a)               | Put $t = 2$ to give $-3\mathbf{i} + 4\mathbf{j}$                                                                                                        | M1    |
|                    | $\sqrt{(-3)^2 + 4^2}$ The – sign is not required                                                                                                        | M1    |
|                    | 5 (m s <sup>-1</sup> )                                                                                                                                  | A1    |
|                    |                                                                                                                                                         | (3)   |
| (b)                | e.g. $\tan \theta = \frac{3}{4}$                                                                                                                        | M1    |
|                    | A correct equation                                                                                                                                      | Alft  |
|                    | 37° or 323° nearest degree                                                                                                                              | A1    |
|                    |                                                                                                                                                         | (3)   |
| (c)                | $\mathbf{v} = (7 - 5t)\mathbf{i} + (12t - 20)\mathbf{j}$                                                                                                |       |
|                    | $= (7\mathbf{i} - 20\mathbf{j}) + t(-5\mathbf{i} + 12\mathbf{j})$                                                                                       | M1    |
|                    | $\frac{\mathbf{v} - (7\mathbf{i} - 20\mathbf{j})}{t} = (-5\mathbf{i} + 12\mathbf{j})$ $\mathbf{OR}: \ t = 0, \ \mathbf{v} = 7\mathbf{i} - 20\mathbf{j}$ | M1 A1 |
|                    | <b>OR</b> : $t = 0$ , $\mathbf{v} = 7\mathbf{i} - 20\mathbf{j}$                                                                                         | M1    |
|                    | $\frac{(-3\mathbf{i} + 4\mathbf{j}) - (7\mathbf{i} - 20\mathbf{j})}{2} = (-5\mathbf{i} + 12\mathbf{j})$                                                 | M1A1  |
|                    | <b>OR</b> : Differentiate wrt <i>t</i>                                                                                                                  | M2    |
|                    | $\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{a} = (-5\mathbf{i} + 12\mathbf{j})$                                                                 | A1    |
|                    |                                                                                                                                                         | (3)   |
| (d)                | $\frac{(7-5t)}{(12t-20)} = \frac{-5}{8}$                                                                                                                | M1 A1 |
|                    | Solve for <i>t</i>                                                                                                                                      | M1    |
|                    | t = 2.2                                                                                                                                                 | A1    |
|                    |                                                                                                                                                         | (4)   |
|                    |                                                                                                                                                         | (13)  |

|             | Notes for Question 5                                                                                            |  |
|-------------|-----------------------------------------------------------------------------------------------------------------|--|
| 5(a)        | M1 Allow column vectors                                                                                         |  |
|             | M1 Finding the magnitude of their v                                                                             |  |
|             | A1 Correct answer                                                                                               |  |
| <b>5(b)</b> | M1 For a relevant trig equation                                                                                 |  |
|             | A1ft A correct equation follow through on their v                                                               |  |
|             | A1 Correct answer (must be in degrees to nearest degree)                                                        |  |
| 5(c)        | M1 Collecting terms in t and constant terms (may be implied)                                                    |  |
|             | M1 Rearranging to required form                                                                                 |  |
|             | A1 Correct answer (isw if they find the magnitude)                                                              |  |
| OR:         | M1 Finding the initial velocity or some other specific velocity                                                 |  |
|             | M1 Use of $\mathbf{a} = \frac{\mathbf{v} - \mathbf{u}}{t}$ with $t = 2$ (or possibly another appropriate value) |  |
|             | A1 Correct answer (isw if they find the magnitude)                                                              |  |
| 5(d)        | M1 Attempt at equation in t only, using ratio of components, allow                                              |  |
| S(u)        | reciprocal and a sign error                                                                                     |  |
|             | A1 Correct equation                                                                                             |  |

| M1 Solve for t (equation must have | ve come from considering ratios) |
|------------------------------------|----------------------------------|
| A1 Correct answer                  |                                  |

| Question<br>Number | Scheme                                                                                                                                                           | Marks |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6(a)               | $2000 - 500 - 500g \sin \alpha = 500a \text{ (truck)}$                                                                                                           | M1 A2 |
|                    | $a = 0.256 \text{ or } 0.26 \text{ (m s}^{-2}) $ (32/125 is A0)                                                                                                  | A1    |
|                    |                                                                                                                                                                  | (4)   |
| <b>(b)</b>         | $D-1200-500-1500g\sin\alpha-500g\sin\alpha=2000a$ (system)                                                                                                       | M1 A2 |
|                    | <b>OR</b> : $D-1200-1500g \sin \alpha - 2000 = 1500a$ (engine)                                                                                                   |       |
|                    | D = 7700                                                                                                                                                         | A1    |
|                    | <b>N.B.</b> They may write down the system and engine equations and then: (a) solve them for <i>a</i> (b) solve them for <i>D</i> .                              | (4)   |
|                    |                                                                                                                                                                  | (4)   |
|                    | Notes for Question 6                                                                                                                                             |       |
| 6(a)               | M1 Using equation(s) of motion to give <u>an equation in a only</u> , with correct number of terms and 500g resolved, condone sign errors                        |       |
|                    | A1 Equation with at most one error                                                                                                                               |       |
|                    | A1 Correct equation                                                                                                                                              |       |
|                    | A1 Correct answer                                                                                                                                                |       |
| 6(b)               | M1 Using an equation of motion to give an equation in <i>D</i> and <i>a</i> only, with correct number of terms and 500g (or 1500g) resolved, condone sign errors |       |
|                    | A1 Equation with at most one error (a does not need to be substituted) Treat omission of g as one error A1 Correct equation                                      |       |
|                    | A1 Correct answer                                                                                                                                                |       |

| Question<br>Number | Scheme                                                                              | Marks |
|--------------------|-------------------------------------------------------------------------------------|-------|
| 7(a)               | 5mg - T = 5ma <b>OR</b> $5mg - T = -5ma$                                            | M1 A1 |
|                    | T - 3mg = 3ma $T - 3mg = -3ma$                                                      | M1 A1 |
|                    | Solve for <i>T</i>                                                                  | DM1   |
|                    | $T = \frac{15mg}{4}$ oe (allow unsimplified and not in terms of $mg$ at this stage) | A1    |
|                    | Force on pulley = $2T$                                                              | M1    |
|                    | $\frac{15mg}{2}$ oe (must be a single positive term)                                | A1    |
|                    |                                                                                     | (8)   |
| (b)                | The tension is the same on both sides of the pulley.                                | B1    |
|                    | Tension is same across the pulley                                                   | (1)   |
|                    |                                                                                     | (9)   |
|                    |                                                                                     |       |
|                    | Notes for Question 7                                                                |       |
| 7.(a)              | M1 Correct number of terms, condone sign errors (M0 if m's missing)                 |       |
|                    | A1 Correct equation                                                                 |       |
|                    | M1 Correct number of terms, condone sign errors (M0 if <i>m</i> 's missing)         |       |
|                    | A1 Correct equation                                                                 |       |
|                    | DM1 Solve for $T$ , dependent on previous two M marks, and must be in               |       |
|                    | terms of <i>m</i> .                                                                 |       |
|                    | A1 Correct expression for T                                                         |       |
|                    | M1 Correct method                                                                   |       |
|                    | A1 Correct answer                                                                   |       |
| (b)                | B1 Any equivalent statement. B0 if any incorrect extras                             |       |
| (b)                | B0 if pulley not mentioned.                                                         |       |

| Question<br>Number | Scheme                                                                                                                         | Marks   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|---------|
| 8(a)               | $s = \frac{1}{2} \times 3 \times 4^2$ <b>OR</b> $s = \frac{1}{2} \times 4 \times 12$                                           | M1      |
|                    | = 24 (m)                                                                                                                       | A1      |
|                    |                                                                                                                                | (2)     |
| <b>(b)</b>         | 12 (m s <sup>-1</sup> ); 42 (m s <sup>-1</sup> )                                                                               | B1      |
|                    | $12 \times 20 + \frac{1}{2} \times 1.5 \times 20^2 \ (= 540)$ <b>OR</b> $\left(\frac{12 + 42}{2}\right) \times 20$             | M1 A1ft |
|                    | $42 \times 2 + \frac{1}{2}(-4) \times 2^{2}  (= 76) \qquad OR \qquad \left(\frac{42 + 34}{2}\right) \times 2$                  | M1 A1ft |
|                    | Total = 640 (m)                                                                                                                | A1 cao  |
|                    |                                                                                                                                |         |
|                    |                                                                                                                                | (6)     |
|                    |                                                                                                                                | (8)     |
|                    | Notes for Question 8                                                                                                           |         |
| 8(a)               | M1 Complete method to find distance travelled in first 4 s                                                                     |         |
|                    | Must be area of a triangle from a <i>v-t</i> graph  A1 Correct answer                                                          |         |
| 8(b)               |                                                                                                                                |         |
| o(n)               | B1 Both speeds seen anywhere e.g. on a diagram or in part (a) M1 Complete method to find total distance travelled in next 20 s |         |
|                    | Must be area of a trapezium from a $v$ - $t$ graph (they may use a rectangle +                                                 |         |
|                    | triangle)                                                                                                                      |         |
|                    | A1 ft Correct unsimplified distance, ft on their 12                                                                            |         |
|                    | M1 Complete method to find total distance travelled in next 2 s                                                                |         |
|                    | Must be area of a trapezium from a <i>v-t</i> graph (they may use a rectangle +                                                |         |
|                    | triangle)                                                                                                                      |         |
|                    | A1 ft Correct unsimplified distance, ft on their 42                                                                            |         |
|                    | A1 cao for total distance                                                                                                      |         |

|                                                                           | http://britishstudentroom.wordpress.com/ |
|---------------------------------------------------------------------------|------------------------------------------|
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
| Pearson Education Limited. Registered company number 872828               |                                          |
| with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |
|                                                                           |                                          |