Please check the examination det	ails bel	ow before enteri	ng your candidat	information
Candidate surname			Other names	Britishste
Pearson Edexcel International GCSE (9–1)	Cen	tre Number	Car	ndidate Number
Time 2 hours		Paper reference	4CH1/1	C 4SD0/1C
Chemistry				
Science (Double Award PAPER 1C	d) 45	SD0		
You must have: Calculator, ruler				Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

Information

- The total mark for this paper is 110.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

The Periodic Table of the Elements

0 He + 2 2 2 2	20 Ne	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86
7	19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85
9	16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84
5	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83
4	12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82
ဇ	11 B boron 5	27 Ai aluminium	70 Ga gallium 31	115 In indium 49	204 TI thallium 81
·			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79
			59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78
			59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77
1 hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 0s osmium 76
			55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75
	mass ɔol ıumber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74
Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73
	relati ato atomic	48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	
			45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57
2	9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontum 38	137 Ba barium 56
-	7 Li Iithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55

HID: Aria Is lidentroom, wordpress.com

Elements with atomic numbers 112–116 have been reported but not fully authenticated

Rg roentgenium

[271] **Ds**darmstadtium
110

[268] **Mt** meitnerium 109

Hs hassium 108

Bh bohrium 107

[266] **Sg** seaborgium 106

[262] **Db** dubnium 105

Rf rutherfordium 104

[227] **Ac*** actinium 89

Ra radium 88

[223] **Fr** francium 87

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

^{*} The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted.

Answer ALL questions.

The box shows the names of some substances.

	Answer ALL	questions.	h _{th://hrin}	Ashdentoon, Notithress. com
the names of sor	me substances.			Vludentroom.
bromine	carbon dioxid	e copper	iodine	, wordbree
methane	nitrogen	sulfur dioxide	water	s.com

(a) Complete the table by choosing substances from the box that match the description.

Each substance may be used once, more than once or not at all.

(5)

Description	Substance
a good conductor of electricity	
an element that has a basic oxide	
a substance used as a fuel	
a major cause of acid rain	
a non-metallic element that is a solid at room temperature	
(b) Describe a test for carbon dioxid	

(2)

(Total for Question 1 = 7 marks)

- **2** (a) Table 1 gives some information about three subatomic particles.
 - (i) Complete Table 1 by giving the missing information.

s some information abou e Table 1 by giving the n		•
Subatomic particle	Relative mass	Relative charge
electron	0.0005	
proton		+1
neutron	1	

Table 1

(ii) Give the name of the part of the atom containing protons and neutrons.

(1)

(b) Table 2 shows the numbers of protons, neutrons and electrons in the species U, V, W, X, Y and Z.

Species	Number of protons	Number of neutrons	Number of electrons
U	8	10	8
V	9	10	10
W	11	12	10
Х	11	12	11
Υ	12	12	12
Z	12	13	12

Table 2

Use the information in Table 2 to answer these questions	
Use the information in Table 2 to answer these questions.	ila.
Each species may be used once, more than once or not at all.	Ventroop
Use the information in Table 2 to answer these questions. Each species may be used once, more than once or not at all. (i) Give the letter of the species that has six electrons in its outer shell.	(1)000
(ii) Give the mass number of Z.	(1)
(iii) Give the letter of the species that is a positive ion.	(1)
(iv) Give the letters of the two species that are isotopes of the same element.	(1)
c) A sample of neon contains two isotopes, ²⁰ Ne and ²² Ne	
The relative abundances of the two isotopes in the sample are	
²⁰ Ne 91.2% ²² Ne 8.80%	
Calculate the relative atomic mass of this sample of neon.	
Give your answer to one decimal place.	
	(3)
relative atomic mass =	
(Total for Question 2 = 11	marks)

3 Some sugar is added to cold water in a beaker.

After some time, all the sugar dissolves and spreads throughout the water.

(a) (i) Name the process that occurs which causes the sugar to spread throughout the water.

(ii) State two ways to make the sugar dissolve more quickly.

(2)

(b) Pure water can be obtained from the sugar solution using this apparatus.

(i) Name the process used to obtain pure water from the sugar solution.

(1)

(ii) Explain the purpose of the piece of apparatus labelled X.

(2)

(Total for Question 3 = 6 marks)

http://britishstudentroom.wordpress.com/

BLANK PAGE

(a) (i) Describe how the student should complete the experiment after putting a spot of each food colouring on the paper.

(ii) Deduce the number of dyes in food colouring H. (iii) Suggest why food colouring F does not move during the experiment. (iv) Explain which two food colourings contain the dye that is likely to be the most soluble in the solvent. (2) (b) Determine which food colouring contains a dye with R _r value closest to 0.67 Show your working.	
most soluble in the solvent. (2) (b) Determine which food colouring contains a dye with R _f value closest to 0.67 Show your working.	Pople Con
Show your working.	
Show your working.	
(Total for Question 4 = 10 marks)	

- This question is about alkanes and alkenes.

 (a) (i) Complete the boxes by giving the missing information about the alkane with R_{II} the molecular formula C_2H_6

molecular formula	C_2H_6
name	
empirical formula	
displayed formula	

(ii) Complete the chemical equation for the complete combustion of the alkane C₂H₆

$$C_2H_6 + \dots O_2 \rightarrow \dots O_2 + \dots H_2O$$

(iii) Incomplete combustion occurs when the air supply is limited.

Give the names of two products of incomplete combustion.

(2)

- (b) An alkene with molecular formula C₄H₈ reacts with bromine to form a compound with molecular formula C₄H₈Br₂
 - (i) What is the name of this type of reaction?

(1)

- X **A** addition
- decomposition
- precipitation
- X **D** substitution

(ii) Draw displayed formulae for two different alkenes with the molecular formula C_4H_8

hits: Ariis Is the Controom worth ress. Com

alkene 1 alkene 2

(iii) State the term used for compounds with the same molecular formula but different structural formulae.

(1)

- (c) The alkene C₃H₆ can be polymerised to form the polymer poly(propene).
 - (i) Complete the equation for this polymerisation reaction.

(2)

(Total for Question 5 = 15 marks)

- (ii) Two ways of disposing of polymers such as poly(propene) are
 - burying them in landfill sites

(ii) Two ways of disposing of polymers such as poly(propene) are • burying them in landfill sites • burning them to release heat energy Discuss the environmental problems caused by these two methods of disposal. (3)	
Discuss the environmental problems caused by these two methods of disposal. (3)	ress.com

http://britishshdentroom.wordpress.com/

BLANK PAGE

6	This question is about some of the Group 1 elements and their compounds.	
	(a) A teacher adds a small piece of lithium to water in a trough.	
	(i) Give three observations that are made when lithium reacts with water.	(3) Others, Com
1		On
2		
3		
	(ii) After the reaction has finished, the teacher adds a few drops of universal indicator to the solution in the trough.	
	Explain the colour of the universal indicator after it is added to the solution.	(2)
	(iii) Write a chemical equation for the reaction of lithium with water.	(2)
	(b) A student does a flame test to see if a white solid contains sodium ions.	
	She cleans a platinum wire before using it for the flame test.	
	(i) Explain why the student needs to clean the platinum wire.	
		(2)

					h _{th}	
(ii)	Which	of these is the	e colour of the flan	ne if the solid conta	nins sodium ions?	(1)
E	X A	green			ASTUCE,	ሌ
E	В	lilac			հղ _{եր։} nins sodium i ön gs?	OOM, WO.
E	⊠ C	red				Topics
E	⊠ D	yellow				COM
(c) Pot	assium	sulfate (K ₂ SO ₄) is an ionic comp	ound.		
(i)	Give th	e formula of e	each ion in potassi	um sulfate.		(1)
		· ·				(-)
	potassi	ium ion		sulfate ion		
(ii)	The me	elting point of	potassium sulfate	e is 1069°C.		
	Explain	why potassiu	um sulfate has a hi	gh melting point.		
	Refer to	o structure an	d bonding in your	answer.		(4)
						(4)
				(Total for	Question 6 = 15 ma	arks)

A student investigates the reaction between magnesium and hydrochloric acidins white method.

This method.

- Step 4 add the magnesium ribbon to the hydrochloric acid
- Step 5 when all the magnesium has reacted, record the highest temperature reached
- (a) Complete the word equation for the reaction.

(1)

(b) The thermometer shows the temperature of the acid at the start of the experiment.

(i) Complete the table by giving the temperatures to the nearest 0.1 °C.

(2)

temperature of the acid at the start in °C	
highest temperature reached in °C	
temperature rise in °C	20.8

(ii) Show that the heat energy change (Q) for this reaction is about 2200 J. Aritis Relatent to the first of 1.0 cm³ of solution = 1.0 g]

(2) Orthogon, Worth the first of the first of

(iii) The mass of magnesium used by the student was 0.12 g.

Calculate the value of the enthalpy change (ΔH), in kilojoules per mole of magnesium, for the reaction between magnesium and hydrochloric acid.

Include a sign in your answer.

(4)

 $\Delta H =$ kJ/mol

(Total for Question 7 = 9 marks)

			hip.
8	(a)	A scientist finds an unlabelled bottle on a shelf.	Oritish.
		She thinks the bottle contains a solution of ammonium sulfate, (NH ₄) ₂ 9	50 ₄ 3thde _{nt}
		A scientist finds an unlabelled bottle on a shelf. She thinks the bottle contains a solution of ammonium sulfate, (NH ₄) ₂ s Describe tests the scientist could do to show that the solution is ammoniately among the solution is ammoniately among the scientist could be solved by the scientist could be shown that the solution is ammoniately among the scientist could be shown that the solution is a solution of the scientist could be shown that the solution is a shelf.	onium sulfate.
			(6) or the contract of the con
			**.com
•••••			

(b) Ammonium sulfate is often used as a fertiliser. It is prepared by reacting ammonia (NH_3) with sulfuric acid (H_2SO_4).

(i) Name the type of reaction that occurs between ammonia and sulfuric acid.

(1) Ordy

(ii) Write a chemical equation for the reaction of ammonia with sulfuric acid.

(1)

(iii) Draw a dot-and-cross diagram to show the bonding in a molecule of ammonia. Show outer electrons only.

(2)

(Total for Question 8 = 10 marks)

http://britishstudentroom.worthress.com/

BLANK PAGE

20

The equation for the reaction is

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$$

- (a) During the reaction the mass of the contents of the flask decreases.
 - (i) State why the mass of the contents of the flask decreases.

(1)

(ii) State the purpose of the cotton wool.

(1)

(iii) Explain why sulfuric acid is not a suitable acid to use in this investigation.

(2)

http://dritishstatentroom.worthress.com/

(b) The graph shows the student's results.

in g

(i) In the investigation the marble chips are in excess.

Explain the shape of the graph.

(4)

(ii) The s of ha	udent repeats the experiment using the same volume of hydrochtoric acid but the concentration of the original acid. All other conditions are kept the same. e grid, draw the curve the student would obtain. sing particle collision theory, how increasing the temperature affects the eaction.		
On th	he grid, draw the curve the student would obtain.	On Mords	
(c) Explain, u			
		(4)	
	(Total for Question 9 = 14 mar)	ks)	
	(Total for Question 9 = 14 mar)	ks)	

10 (a) The diagram shows the apparatus a teacher uses to determine the formula of an oxide of lead.

This is the teacher's method.

- Step 1 find the mass of the reduction tube
- Step 2 add some of the lead oxide to the reduction tube
- Step 3 find the mass of the reduction tube and lead oxide
- Step 4 pass hydrogen gas over the lead oxide and ignite the hydrogen at the hole
- Step 5 heat the lead oxide strongly for 10 minutes
- Step 6 keep passing hydrogen through the reduction tube until the tube and contents are cool
- Step 7 find the new mass of the reduction tube and its contents
- (i) Give a reason why hydrogen is passed through the reduction tube until the tube and contents are cool.

(1)

(ii) Describe what the teacher should do next to make sure all the lead oxide has been reduced to lead.

(2)

(b) The teacher completes the experiment and obtains these results.

mass of reduction tube = 23.50 gmass of tube + lead oxide = 28.64 gmass of tube + lead = 28.16 g

(i) Calculate the mass of lead formed.

mass of lead =g

(ii) Calculate the mass of oxygen removed from the lead oxide.

(1)

mass of oxygen =g

(iii) Determine the empirical formula of the lead oxide.

(4)

empirical formula of the lead oxide

- (c) The insoluble salt lead(II) chloride (PbCl₂) can be prepared by reacting a solution of lead(II) nitrate with dilute hydrochloric acid.

 Cauation for the reaction by adding the state symbols.

$$Pb(NO_3)_2(....) + 2HCl(...) \rightarrow PbCl_2(...) + 2HNO_3(...)$$

(ii) Show that the maximum mass of lead(II) chloride that can be made from 0.0370 mol of hydrochloric acid is about 5 g.

$$[M_{\rm r} \text{ of PbCl}_2 = 278]$$

(3)

maximum mass =g

(Total for Question 10 = 13 marks)

TOTAL FOR PAPER = 110 MARKS

http://britishshdentroom.wordpress.com/

BLANK PAGE

http://britishstadentroom.worthress.com/

BLANK PAGE