Please check the examination deta	ails bel	ow before entering your	candidate information
Candidate surname		Other na	mes Britishs.
Pearson Edexcel International GCSE (9–1)	Cen	tre Number	Candidate Number
Time 1 hour 15 minutes		Paper reference	ICH1/2C
Chemistry PAPER 2C			
You must have: Calculator, ruler			Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

Information

- The total mark for this paper is 70.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

P66057A
©2021 Pearson Education Ltd.
1/1/1/1/

The Periodic Table of the Elements

							•	
0 4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully fully	d _{stu-}	
7	19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not	dentroon, we	<i>Y</i>
9	16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ave been rep	Astudentroon, wo	Spress.com
5	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112–116 ha authenticated		
4	12 carbon 6	28 Silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82	omic numbers		
က	11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81	Elements with atomic numbers 112–116 have been reported but not fully authenticated	nitted.	ber.
			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elem	peen on	nole num
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	[272] Rg roentgenium	03) have	arest wh
			59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78	[271] Ds damstadtium 110	ers 90–1	to the ne
			59 Co cobalt 27	103 Rh rhodium 45	192 Fr iridium 77	[268] Mt meitnerium 109	ic numb	rounded
hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108	ds (atom	ot been ı
		_	55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107	e actinoi	e have n
	mass bol iumber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106	1) and th	d chlorin
Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105	ers 58–7	opper and
	relati atc atomic		48 Ti tttanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104	ic numbe	ses of cc
			45 Sc scandium 21	89 Y yttrium 39	139 La * lanthanum 57	[227] Ac* actinium 89	ıs (atomı	mic mas.
5	9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88	* The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted.	The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.
-	7 Li Ilthium 3	23 Na sodium 11	39 X potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87	* The la	The rel

^{*} The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted.

Answer ALL questions. Write your answers in the spaces Use the Periodic Table to help you answer this question. (a) (i) Name the element with atomic number 14	nrovided.
Use the Periodic Table to help you answer this question.	³ Istudent
(a) (i) Name the element with atomic number 14	(1) ⁰⁷ th ₇
(ii) Name the element with a relative atomic mass of 11	(1)
(iii) Name the element in Group 2 and Period 3	(1)
(b) (i) Determine the number of neutrons in a phosphorus atom with m	nass number 31 (1)
(ii) State the electronic configuration of an aluminium atom.	(1)
(iii) State why neon is unreactive.	(1)
(Total for Quest	tion 1 = 6 marks)

2 A student investigates the rusting of iron.

(1)

(ii) Name the main compound in rust.

(1)

(b) The student then sets up two more test tubes containing iron nails.

Explain why the iron nail in tube 1 and the iron nail in tube 2 do not rust.

(4)

tube 1
tube 2

(Total for Question 2 = 6 marks)

http://britishstudentroom.wordpress.com/

BLANK PAGE

(a) (i) Give the name of the industrial equipment.

(1)

(ii) Give one use of the fuel oil fraction.

(1)

(iii) Give the names of fraction A and fraction F.

(2)

fraction A.....

fraction F.....

		http.
(b)	One compound in the gasoline fraction is the alkane octane (C_8H_{18}) as	nd one
	compound in the kerosene fraction is the alkane dodecane ($C_{12}H_{26}$)	

These two alkanes are covalently bonded and have simple molecular structures.

(i) Give the general formula for the alkanes.

(ii) Explain, in terms of their structures, why $C_{12}H_{26}$ has a higher boiling point than C_8H_{18}

(3)

(c)	Catalytic cracking	can be used to	convert the alkane C ₁₂ H ₂₆	into more useful	products

(i) Give the name of the catalyst used for catalytic cracking.

(1)

(ii) Complete the equation for this cracking reaction.

(1)

$$C_{12}H_{26} \rightarrow C_9H_{20} + \dots$$

(Total for Question 3 = 10 marks)

A student investigates the solubility of potassium nitrate in water. She measures the masses of potassium nitrate that dissolve in 25 cm³ of water at different temperatures. The table shows the student's results. One of the results is anomalous.							
10	20	30	40	50	60	70	COM
8.0	10.0	12.5	16.0	17.5	26.5	34.0	
	lts. One	lts. One of the re	Its. One of the results is a	Its. One of the results is anomalou	10 20 30 40 30	10 20 30 40 30 00	10 20 30 40 30 00 70

(a) (i) Plot the results on the grid.

(1)

(ii) Draw a circle around the anomalous result.

(1)

(iii) Ignoring the anomalous result, draw a curve of best fit.

(1)

		hub.
(b) Suggest two possible mistakes that co	uld have caused the anom	alous result.
		Other (2)
(b) Suggest two possible mistakes that con		**************************************
		9. jan 19. jan
2		°.com
2		
(c) Use your graph to find the maximum n 25 cm ³ of water at 75 °C.	nass of potassium nitrate t	hat dissolves in
Show on your graph how you obtained	d your answer.	
		(2)
		mass = g
(d) Use your graph to calculate the solubili water at 25 °C.	ity of potassium nitrate in	g per 100 g of
[1.0 cm ³ of water has a mass of 1.0 g]		
		(2)
	solubility =	g per 100 g of water
	(Total for Q	uestion 4 = 9 marks)

http://britishstudentroom.worthress.com/

BLANK PAGE

10

(a) Give two characteristics of a homologous series.	itis _{Astudentro} (2)
	O'db _{re}
(b) When ethanol is heated with potassium dichromate(VI) and one other reage the ethanol is oxidised to ethanoic acid, CH₃COOH	ent,
(i) Give the formula of the other reagent.	(1)
(ii) State the colour change that occurs during this oxidation reaction.	(2)
from to	
(iii) Draw the displayed formulae for ethanol and ethanoic acid in the boxes.	. (2)
ethanol ethanoic acid	

red by two different methods. mation about the two methods.	Fermentation of glueose sugar cane slow impure
Hydration of ethene	Fermentation of glucose
crude oil	sugar cane
fast	slow .cox
pure	impure
300°C	30°C
60 – 70 atmospheres	1 atmosphere
phosphoric acid	enzymes in yeast
	300°C 60 – 70 atmospheres

(i) Discuss the advantages and disadvantages of these two methods, using information from the table.		
		(6)

(ii) The word equation for the fermentation process is ${\tt glucose} \, \to \, {\tt ethanol} \, + \, {\tt carbon} \, {\tt dioxide}$ Complete the chemical equation for this reaction.

http://britishstudentroom, wordpress.con

 $C_6H_{12}O_6 \rightarrow \dots + \dots$

(Total for Question 5 = 14 marks)

(1)

(2)

(b) The ionic half-equation for the formation of chlorine at the positive electrode is $2Cl^-\toCl_2+2e^-$ (i) State why this reaction is an oxidation reaction.	
$2Cl^- \rightarrow Cl_2 + 2e^-$	Ntros
(i) State why this reaction is an oxidation reaction.	(1) This con
(ii) Give the ionic half-equation for the formation of hydrogen at the negative ele	ectrode. (1)
(iii) State why it is safer to do this electrolysis in a fume cupboard.	(1)
(iv) Suggest why the volume of chlorine collected during this electrolysis is less than the volume of hydrogen collected.	(1)

(c) In the chemical industry, chlorine can be produced by the electrolysis of molten sodium chloride.

The overall equation for this reaction is

$$2NaCl(l) \rightarrow 2Na(l) + Cl_2(g)$$

(i) Explain why sodium chloride needs to be molten rather than solid for electrolysis to occur.

(2)

(ii) Calculate the maximum volume, in dm³, of chlorine gas at rtp that can be obtained from 23.4 tonnes of molten sodium chloride.

 $[1 \text{ tonne} = 10^6 \text{ g}]$

 $[M_{\rm r} \text{ of NaCl} = 58.5]$

[molar volume of chlorine at rtp = $24 \,\text{dm}^3$]

Give your answer in standard form.

(4)

volume = dm³

(Total for Question 6 = 13 marks)

Diagrams are not to scale.

(a) Give the names of X, Y and Z.

(3)

(b) What is the colour of phenolphthalein in phosphoric acid?

(1)

- A blue
- colourless
- pink
- D red

(c) The student titrates 25.0 cm³ of phosphoric acid with a solution of sodium hydroxide (NaOH). Table 1 shows the student's results.					
titration number	1	2	3	4 %	
volume of NaOH added in cm ³	30.35	30.25	30.00	30.30	
concordant results					

Table 1

Concordant results are those within 0.20 cm³ of each other.

(i) Add ticks (\checkmark) to table 1 to show the concordant results.

(1)

(ii) Use your ticked results to calculate the mean (average) volume of NaOH added.

(2)

(d) Table 2 shows the titration results of another student.

ole 2 shows the titration results of another student.	Auto:/Aritishstua	
volume of phosphoric acid used in cm ³	25.0 chts	
concentration of sodium hydroxide solution in mol/dm ³	0.525	. Words
mean volume of sodium hydroxide added in cm ³	30.40	Northress. Com
Table 2		N

Table 2

The equation for the reaction is

$$3NaOH \ + \ H_3PO_4 \ \rightarrow \ Na_3PO_4 \ + \ 3H_2O$$

(i) Calculate the amount, in moles, of NaOH in 30.40 cm³ of sodium hydroxide solution.

amount = mol

(ii) Calculate the amount, in moles, of H₃PO₄ in 25.0 cm³ of phosphoric acid.

(1)

amount = mol

(iii) Calculate the concentration, in mol/dm³, of the phosphoric acid.

(2)

concentration = mol/dm³

(Total for Question 7 = 12 marks)

TOTAL FOR PAPER = 70 MARKS

http://britishstudentroom.worthress.com/

BLANK PAGE