

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 110.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P 7 0 7 0 3 A 0 1 3 6

CAPITISHSULGENTOON DANG WEB SUD

The Periodic Table of the Elements

0 4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully
_	19 fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	Elements with atomic numbers 112–116 have been reported but not fully authenticated
O	16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ave been rep
S.	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112–116 ha authenticated
4	12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn th 50	207 Pb lead 82	mic number
ო	11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI thallium 81	ents with atc
			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium
			59 Nairickel 28	106 Pd palladium 46	195 Pt platinum 78	[271]
			59 Co cobatt 27	103 Rh rhodium 45	192 F iridium 77	[268] Mt meitnerium 109
1 Hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
			55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
	mass bol number		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
	relatir atc atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
			45 Sc scandium 21	89 Y yttrium 39	139 La * lanthanum 57	[227] Ac* actinium 89
2	9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
-	7 Li Ilthium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

^{*} The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

hips://hritishsudentoombabba web app.

Answer ALL questions.

Some questions must be answered with a cross in a box ⊠. If you change your mind about an ne questions must be answered with a cross in a box 🗵. If you change your mind any answer, put a line through the box 🔀 and then mark your new answer with a cross 🖎

- This question is about acids, alkalis and indicators.
 - (a) Which of these is the colour of litmus indicator in an acidic solution?

(1)

- X blue
- X orange В
- X C red
- X **D** yellow
- (b) Which of these is the pH value of a neutral solution?

(1)

- X
- X
- C 7
- X D 14
- (c) Which of these describes a solution with a pH value of 9?

(1)

- X A strongly acidic
- X strongly alkaline
- X weakly acidic C
- X weakly alkaline

(d)) Whi	ch c	of these is the chemical formula of an acid?	https://doitishstack(1)
	X	A	HNO ₃	Aroon by Sec.
	×	В	H_2O	Od Neth Briefly
	×	C	NaCl	Z.
	X	D	NaOH	
(e)	Nan	ne th	ne type of reaction that occurs when an acid reacts with an alkali.	(1)
(f)			ne two products of the reaction between hydrochloric acid and um hydroxide.	(2)

(a) (i) State the meaning of the term solute .	htps://bitiststack/1)
(ii) State the meaning of the term solvent .	(1)
(b) Explain what is meant by a saturated solution.	(2)
(c) A dark purple liquid is diluted by adding water. The diluted liquid becomes a pale purple colour. Explain the process that causes this change. Refer to particles in your answer.	(2)

hitos: Aritists titelentoon by Da web and

3 This question is about chromatography.

Two students carry out separate chromatography experiments to find the R_f values for five different food dyes, A, B, C, D and E.

(a) State two things that should be the same in both experiments so that the students can compare their results fairly.

· heb

(2)

1.....

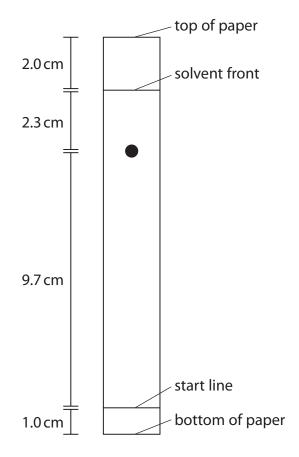
(b) After doing the experiments the students calculate the R_f value for each food dye.

The table shows their results.

Dye	Student 1 R _f value	Student 2 R _f value
А	0.45	0.45
В	0.63	0.64
С	0.00	0.00
D	0.83	1.20
E	0.30	0.30

(i) State what can be concluded about dye C.

(1)


(ii) Explain which R_f value cannot be correct.

(2)

(c) The diagram shows a chromatogram for a different food dye.

Some distances are shown on the diagram.

Calculate the R_f value for this food dye.

Give your answer to two significant figures.

(3)

Hips://britiststudentoomby30a web app

 $R_f = \dots$

(Total for Question 3 = 8 marks)

4	(a)	Sta	te th	e me	eaning of	the term atomic number .	Augs: BritisHstade (1)

	(b)	An	aton	n of e	element)	K contains 14 protons, 14 electrons and 15 neutrons.	³ 40)
		(i)	Whi	ch of	these is	the mass number of this atom?	(4)
			×	A	14		(1)
			X	В	15		
			X	C	28		
			×	D	29		
		(ii)	Expl	ain v	vhich gro	oup of the Periodic Table element X belongs to.	(2)

(c) The table shows the composition of a sample of a different element, Y, containing three isotopes. Mass number of isotope Percentage of isotope in sample 95.0						
(c) The table s three isoto	(c) The table shows the composition of a sample of a different element, Y, containing three isotopes.					
	Mass number of isotope	Percentage of isotope in sample	OK3OG MESS.			
	32	95.0	\$\frac{\fin}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\fin}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\			
	33	0.75				
	34	4.25				

Using information from the table, calculate the relative atomic mass (A_r) of this sample of element Y.

Give your answer to one decimal place.

(3)

$$A_r = \dots$$

(Total for Question 4 = 7 marks)

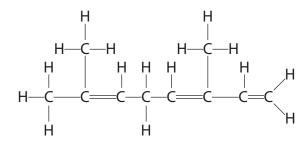
5	This is a question about metals and their compounds. (a) State one property of metals.	(1) 64.30a Mediano
	(b) Mercury is the only metal that is liquid at room temperature.Describe the difference in the movement of particles in liquid mercury and in a solid metal.	(2)
	(c) Magnesium is a metal that burns in air. (i) State one observation made during the combustion of magnesium metal.	(1)
	(ii) State one chemical property of the product of combustion that can be used to classify magnesium as a metal.	(1)
	(d) In the absence of air, magnesium reacts with sulfur to form the ionic compound magnesium sulfide, MgS(i) Give a reason why the reaction needs to be done in the absence of air.	(1)

(iii) Explain why magnesium sulfide has a very high melting point.	(3)
(iii) Explain why magnesium sulfide has a very high melting point.	(3)
(iii) Explain why magnesium sulfide has a very high melting point.	(3)
(iii) Explain why magnesium sulfide has a very high melting point.	(3)
(iii) Explain why magnesium sulfide has a very high melting point.	(3)
Give the charges on the ions.	h _{los:/hhitishshadenhoombasde}

6 Ocimene is an organic compound that gives some plants their particular smell.

The molecular formula of ocimene is $C_{10}H_{16}$

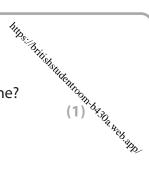
(a) Calculate the relative formula mass (M_r) of ocimene.



$$M_r = \dots$$

(b) Using ocimene as an example, explain what is meant by the term **empirical formula**.

(c) The displayed formula of ocimene is


Explain why ocimene is described as an unsaturated hydrocarbon.

(3)

(d)	Ocimene	is	an	alkene.
١,	· ~ /	CITTICITE		u. i	and circ

(i) Which of these types of reaction occurs between ocimene and bromine?

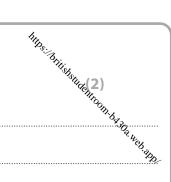
- **A** addition
- B polymerisation
- C precipitation
- **D** substitution
- (ii) Many alkenes have the general formula $C_n H_{2n}$

Suggest why ocimene does not have this general formula.

(1)

(e) Ocimene can take part in combustion reactions.

Complete the equation for the complete combustion of ocimene.


(2)

$$C_{10}H_{16}$$
 + O_2 \longrightarrow +

(f) Two different products can form during the inco One product is a solid and the other is a poisono(i) Identify these two products.	h _{llys, lo} omplete combustion of ocimenes, lous gas. (2)
(ii) State why the gas produced is poisonous.	(1)
	(Total for Question 6 = 13 marks)

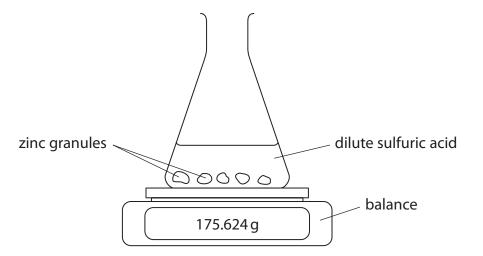
7 (a) l	Explain the meaning o	of the term thermal	decomposition.
----------------	-----------------------	----------------------------	----------------

(b) The equation for the thermal decomposition of potassium hydrogencarbonate is

$$2KHCO_3 \rightarrow K_2CO_3 + H_2O + CO_2$$

Calculate the maximum mass of $\rm K_2CO_3$ that could be produced from the thermal decomposition of 2.50 g of KHCO $_3$

(4)


maximum mass of
$$K_2CO_3 =$$
 _____ g

(Total for Question 7 = 6 marks)

hitos: Aridishstudentoon by Da web and

8 A student uses this apparatus in an experiment to study the rate of the reaction between zinc and dilute sulfuric acid.

This is the student's method.

- add a few zinc granules to a conical flask on a balance
- add 100 cm³ of dilute sulfuric acid to the flask, start a timer and immediately record the mass of the flask and contents
- record the mass of the flask and contents every minute until the mass remains constant

The mass of the flask and contents decreases because hydrogen gas is produced and leaves the flask.

The student uses the mass readings to calculate the total mass of hydrogen produced.

(a) Complete the equation for the reaction by adding the state symbols.

(1)

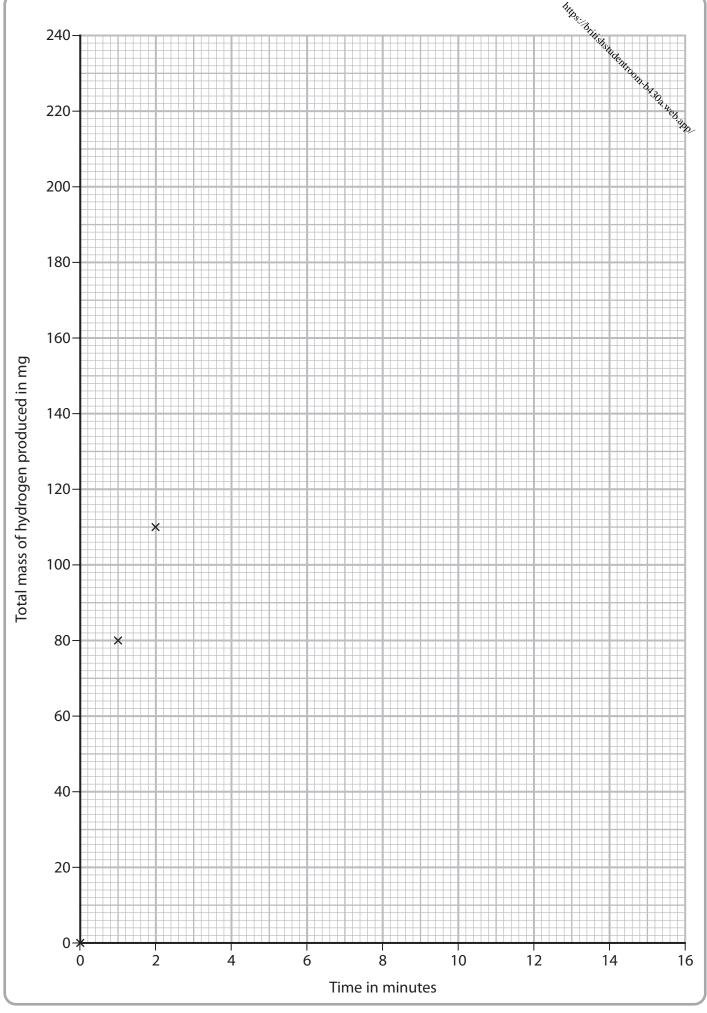
$$Zn (\dots) + H_2SO_4 (\dots) \rightarrow ZnSO_4 (\dots) + H_2 (\dots)$$

(b) The table shows the student's results.

ws the student's resu	ılts.	Alps: Aritists to the to the total and the t
Time in minutes	Total mass of hydrogen produced in mg	*Mroonby Ada No.
0	0	N. ido
1	80	
2	110	
3	130	
4	148	
5	162	
6	165	
7	184	
8	192	
9	198	
10	204	
11	209	
12	214	
13	218	
14	220	
15	220	

(i) Plot the student's results. The first three have been done for you.

(1)


(ii) Draw a circle around the anomalous result.

(1)

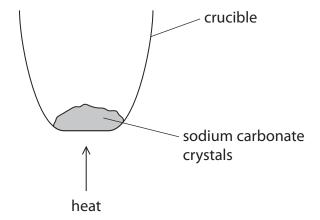
(iii) Draw a curve of best fit.

(1)

(iv) Give a possible reason for the anomalous result.	(British Rede (1)
(v) Determine a more likely value for this result.	10)
(c) (i) Explain how the shape of the curve shows how the rate of the reaction changes as time increases.	(2)
(ii) At the end of the experiment there is no zinc left in the flask. Give a conclusion the student could make from this observation.	(1)

(d) The student does another experiment using	
the same amount of similarly sized magnesium granules instead of zinc	Sts. Haden
the same amount of similarly sized magnesium granules instead of zinc	Altroom, h
the same volume of sulfuric acid, but of a lower concentration	730a.46
Explain why it is difficult to predict how the rate of reaction in this experiment compares with the rate of reaction in the first experiment.	:98 _{811de_{III}100_{III}1b430_{II We}}
(e) Explain, in terms of particle collision theory, how increasing the temperature affects the rate of a reaction.	(3)

	the state of the s	
9	A student is given a mixture of two white solid compounds, and a colourless solution containing the same two compounds. The student is told that one of the compounds is a halide and that the other compound is a carbonate. (a) Give two reasons why the student should know without doing any tests, that one	ide _{ntre}
	The student is told that one of the compounds is a halide and that the other compound is a carbonate.	OON, DA SOR NEDS.
	(a) Give two reasons why the student should know, without doing any tests, that one of the compounds cannot be copper(II) carbonate.	
		(2)
1		
2		
	(b) Describe tests the student could do to show that the mixture contains	
	potassium carbonate and potassium iodide.	(6)
	(Total for Question 9 = 8 ma	rks)


hips://britishstudentoom.bd.doa.web.app.

10 (a) A student is given a pure sample of sodium carbonate crystals and is told that the formula of the crystals is Na₂CO₃.xH₂O

Compute shows about the sodium carbonate crystals.

(1)

(b) The student uses this apparatus to find the value of x in $Na_2CO_3.xH_2O$

This is the student's method.

- find the mass of an empty crucible without a lid
- add some sodium carbonate crystals Na₂CO₃.xH₂O to the crucible
- find the total mass of the crucible and sodium carbonate crystals
- heat the crucible to remove water from the crystals
- allow the crucible and contents to cool down
- find the mass of the cold crucible and contents

These are the student's results.

	Mass in grams
empty crucible	22.75
crucible and sodium carbonate crystals Na ₂ CO ₃ .xH ₂ O	29.71
cold crucible and contents	25.93

(i) Calculate the mass of sodium carbonate left after heating and cooling.

(ii) Calculate the mass of H_2O lost from the sodium carbonate crystals during heating.

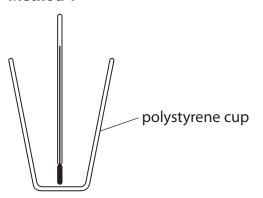
(1)

mass of
$$H_2O =$$
 g

(iii) Show that the student's results suggest that the formula of the sodium carbonate crystals is $Na_2CO_3.7H_2O$

$$[M_r \text{ of Na}_2\text{CO}_3 = 106 \qquad M_r \text{ of H}_2\text{O} = 18]$$

(3)

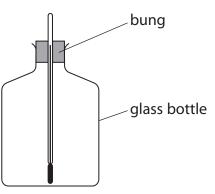

	(Total for Question 10 = 10	marks)
	accurate value for x.	(2)
(ii)	Describe how the student could improve the method to obtain a more	
	Explain what could have caused the student's value for x to be too low.	(2)
(i)	The student did not make any mistakes in their measurements.	Troom baso.
	e student's teacher says that the correct formula of the sodium carbonate $^{\circ}$ stals is Na $_2$ CO $_3$.10H $_2$ O	³ rii _{sifstadentroonroo}

hitos: Aritists tidentoon by Da web and

11 A student investigates the temperature change during the reaction between zinc metal and copper(II) sulfate solution.

The student considers two different methods.

Method 1



- ge during the reaction.

 s.

 pour 50 cm³ of copper(II) sulfate solution into the polystyrene cup
- record the temperature of the solution
- add 3 g of zinc powder
- stir using the thermometer and record the highest temperature reached

Method 2

- record the temperature of 50 cm³ of copper(II) sulfate solution
- pour the 50 cm³ of copper(II) sulfate solution into the glass bottle
- add 3 g of zinc powder
- push the bung and thermometer into the bottle and record the highest temperature reached

(a) Discuss the advantages and disadvantages of each method.	Algos: Abilish Rede (6)
	· ida

(b) The equation for the reaction is

$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$

50 cm³ of copper(II) sulfate solution contains 0.025 mol CuSO₄

A mass of 3 g of zinc is used.

Show that the zinc is in excess.

$$[A_r \text{ of zinc} = 65]$$

(2)

- hips:/britiststudentoombd30a web app

(c) The student reacts a solution containing 0.025 mol CuSO₄ with an excess of zinc.

These are the student's results.

temperature of 50 cm³ of copper(II) sulfate solution = 21.1 °C

highest temperature reached = 40.6 °C

(i) Show that the energy change Q for this reaction is about 4000 J

[mass of
$$1 \text{ cm}^3$$
 of solution = 1.0 g]

[for the solution,
$$c = 4.2 J/g/^{\circ}C$$
]

(3)

(ii)	Calculate the	molar on	thalou chanc	in (AU) in	k1/mal	for the reaction
(11)	Calculate the	inolar eni	шагру спапс	je (Δπ), III	KJ/IIIOI,	for the reaction.

~C/~	5)
1/1/2	S) Ohrbydda beb an
	*30a. web

$$\Delta H = \dots kJ/mol$$

(d) The ionic equation for the reaction is

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

Explain what is oxidised and what is reduced in this reaction.

(2)

(Total for Question 11 = 16 marks)

TOTAL FOR PAPER = 110 MARKS

hitos: Aritists tidentoon by Da web and

BLANK PAGE

hitos: Aritists titelentoon by Da web and

hitos: Aridists and control of the section