| Please check the examination details be | elow before ente | ering your candidate i | nformation | |---|------------------|------------------------|-------------------| | Candidate surname | | Other names | Thiishshide | | Centre Number Candidate N | lumber | | "Identroon balda" | | Pearson Edexcel Inter | rnation | al Advand | ced Level | | Time 1 hour 30 minutes | Paper reference | WME | 02/01 | | Mathematics | | | 00 | | International Advanced S
Mechanics M2 | ubsidiar | y/Advanced | Level | | You must have:
Mathematical Formulae and Statistic | cal Tables (Ye | llow), calculator | Total Marks | Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided - there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Whenever a numerical value of g is required, take $g = 9.8 \,\mathrm{m\,s^{-2}}$, and give your answer to either 2 significant figures or 3 significant figures. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 7 questions in this question paper. The total mark for this paper is 75. - The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. Turn over ▶ Leave blank | • | A particle of mass 0.5 kg is moving with velocity $(2\mathbf{i} + 4\mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$ when it receives impulse of $(-4\mathbf{i} + 6\mathbf{j}) \mathrm{N} \mathrm{s}$. (a) Find the speed of the particle immediately after it receives the impulse. | an | |---|--|-------------------------------| | | (a) Find the speed of the particle immediately after it receives the impulse. | ⁷⁰ / _{0×} | | | (b) Find the size of the angle between the direction of motion of the particle immediate before it receives the impulse and the direction of motion of the particle immediate after it receives the impulse. | ery | | | | (3) | Question 1 continued | W. Anii | blank | |----------------------|----------------------------------|--| | | Olips://Oritists.titakent.com/bg | | | | | ,)
O e e e e e e e e e e e e e e e e e e e | | | | (6). (4)p) | Q1 | | | (Total 8 marks) | | A car of mass 600 kg tows a trailer of mass 200 kg up a hill along a straight road that is A car of mass 600 kg tows a trailer of mass 200 kg up a min around inclined at angle θ to the horizontal, where $\sin\theta = \frac{1}{20}$. The trailer is attached to the car by the motion of the car from non-gravitational to the motion of the trailer from non-gravitational forces is modelled as a constant force of magnitude 300 N. When the engine of the car is working at a constant rate of PkW the car and the trailer have a constant speed of 15 m s⁻¹ (a) Find the value of P. **(5)** Later, at the instant when the car and the trailer are travelling up the hill with a speed of $20 \,\mathrm{m\,s^{-1}}$, the towbar breaks. When the towbar breaks the trailer is at the point X. The trailer continues to travel up the hill before coming to instantaneous rest at the point Y. The resistance to the motion of the trailer from non-gravitational forces is again modelled as a constant force of magnitude 300 N. (b) Use the work-energy principle to find the distance XY. | | h _{th} | Leave | |----------------------|---------------------------------------|-------| | Question 2 continued | Aigs:/BritisHstadentroomby | Diank | | Question 2 continued | *8h _{8th} | | | | · · · · · · · · · · · · · · · · · · · | | | | On by | | | | | 8.4. | | | | (%) | 1 | | | Ands: British state of the Court Cour | Le
bl | |----------------------|--|----------| | Question 2 continued | ³⁷ iti _{8H8Hg} | | | | · · · · · · · · · · · · · · · · · · · | | | | | 0.4° | | | | 8 | *N _{5/7} | blank | |--|--| | Question 2 continued | | | Question 2 continued This Arias Ari | DON. | | | - 30 AV | | | - Action of the state st | | | - | | | - | | | - | | | - | | | - | | | - | | | - | | | - | | | - | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | | | | | | | | | | - | | | - | | | - | | | - | | | - | | | - | | | - | | | - | | | - | | | - | | | - | | | 02 | | | Q2 | | (Total 9 marks) |) | A particle P of mass $0.25 \, \mathrm{kg}$ is moving on a smooth horizontal surface under the action of a single force, \mathbf{F} newtons. $$\mathbf{v} = (6\sin 3t)\mathbf{i} + (1 + 2\cos t)\mathbf{j}$$ (a) Find \mathbf{F} in terms of t. **(3)** At time t = 0, the position vector of P relative to a fixed point O is $(4\mathbf{i} - \sqrt{3}\mathbf{j})$ m. (b) Find the position vector of P relative to O when P is first moving parallel to the vector i. **(6)** | | h _{thos://ti} | Leave | |----------------------|-------------------------|--------| | Question 3 continued | hips://triishstudentrog | | | | - Janob | 'ANGE | | | | SO HOS | | | | 800 | h _{tho.} | Leave | |----------------------|---------------------------------------|-----------| | Question 3 continued | Hilps: Abritishs the lead on the ba | blank | | | ^{3/Is} tude, | | | | · · · · · · · · · · · · · · · · · · · | | | | | , o o | | | | (8). (8). | Question 3 continued | Albs: Abriists Hatentoon by | blank | |----------------------|---------------------------------------|--------| | | · · · · · · · · · · · · · · · · · · · | | | | | OR WEB | Q3 | | | (Total 9 marks) | | Two small balls, A and B, are moving in opposite directions along the same straight line Two small balls, A and B, are moving in opposite directions arong an on smooth horizontal ground. The mass of A is 2m and the mass of B is 3m. The balls collide directly. Immediately before the collision, the speed of A is 2u and the a and a is a and a is a. The coefficient of restitution between a and a is a, where a is a. (a) show that the speed of B immediately after the collision is $\frac{1}{5}u(1+6e)$. **(6)** After the collision with ball A, ball B hits a smooth fixed vertical wall which is perpendicular to the direction of motion of B. The coefficient of restitution between B and the wall is $\frac{5}{7}$ Ball B rebounds from the wall and there is a second direct collision between A and B. (b) Find the range of possible values of e. **(4)** |
 | | |------|------|
 |
 |
 |
 |
 |
 | h _{ths.} | blank | |----------------------|--|----------| | Question 4 continued | h _{ttps://triishstutehtroon} | | | | · · · · · · · · · · · · · · · · · · · | | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | N. O. S. | | | | A A CO | | | | 900 | 1 | | uestion 4 continued | h _{ttps://hiishstatehhoom.bd/g} | |---------------------|--| | | *CHOODIN DAY | Question 4 continued | hitos: Abriisis de la | Leave | |----------------------|--|----------| | Question i continued | *st _{stident} | | | | YOOM DA | 2 | | | | a Hebian | | | | 10 | Q4 | | | (Total 10 marks) | | | | , , | | Figure 1 A smooth solid hemisphere is fixed with its flat surface in contact with rough horizontal ground. The hemisphere has centre O and radius 5a. A uniform rod AB, of length 16a and weight W, rests in equilibrium on the hemisphere with end A on the ground. The rod rests on the hemisphere at the point C, where AC = 12a and angle CAO = a, as shown in Figure 1. Points A, C, B and O all lie in the same vertical plane. (a) Explain why $$AO = 13a$$ (1) The normal reaction on the rod at C has magnitude kW (b) Show that $$k = \frac{8}{13}$$ **(3)** The resultant force acting on the rod at A has magnitude R and acts upwards at θ° to the horizontal. - (c) Find - (i) an expression for R in terms of W - (ii) the value of θ **(8)** DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA | Question 5 continued | Pitos: Aritists date director by | blank | |----------------------|----------------------------------|--------------| | | | to a web app | On and an Employment | h _{ths://8.} | l Le | |----------------------|-------------------------------|-------| | Question 5 continued | https://driists.indentroombas | | | | - Moonby | | | | | 9.4°C | Question 5 continued | h _{thos://htis} | blank | |----------------------|--|-------------| | Question 5 continued | Aldos: Aritista da | | | | |)
?
} | | | | Teb. app | Q5 | | | (Total 12 marks) | | 6. [The centre of mass of a semicircular arc of radius r is $\frac{2r}{\pi}$ from the centre.] Figure 2 Uniform wire is used to form the framework shown in Figure 2. In the framework, - *ABC* is straight and has length 25*a* - *ADE* is straight and has length 24*a* - ABD is a semicircular arc of radius 7a - EC = 7a - angle $AEC = 90^{\circ}$ - the points A, B, C, D and E all lie in the same plane The distance of the centre of mass of the framework from AE is d. (a) Show that $$d = \frac{53}{2(7+\pi)}a$$ (4) The framework is freely suspended from A and hangs in equilibrium with AC at angle α° to the downward vertical. (b) Find the value of α . | | h _{ths.} | Leave | |----------------------|--|--------| | Question 6 continued | · Oritish | | | | Aigs: Ariiststadentoo, | | | | ^V ^O O _I | Dog. | | | | ×30 | | | | es app | Aips://Dritishstadentroom.bg | Leav | |----------------------|---------------------------------------|-------| | Question 6 continued | · British | olum | | | Stratent. | | | | · · · · · · · · · · · · · · · · · · · | .] | | | | 10.4° | | | | 0,800 | Apps. | blank | |----------------------|-----------------------------|--| | Question 6 continued | hitish _{sh} | | | | nips:/britiststudentoom.bd/ | | | | | 6 | | | | Q. H.C.S. | | | | Po | Q6 | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | (Total 11 marks) | | | | • | | 7. A particle P is projected from a fixed point O on horizontal ground. The particle is projected with speed u at an angle α above the horizontal. At the instant when the horizontal distance of P from O is x, the vertical distance of P above the ground is y. The motion of P is modelled as that of a particle moving freely under gravity. (6) A small ball is projected from the fixed point O on horizontal ground. The ball is projected with speed $20 \,\mathrm{m\,s^{-1}}$ at angle θ° above the horizontal. A vertical pole AB, of height $2 \,\mathrm{m}$, stands on the ground with $OA = 10 \,\mathrm{m}$, as shown in Figure 3. Figure 3 The ball is modelled as a particle moving freely under gravity and the pole is modelled as a rod. The path of the ball lies in the vertical plane containing O, A and B. Using the model, (b) find the range of values of θ for which the ball will pass over the pole. **(3)** Given that $\theta = 40$ and that the ball first hits the ground at the point C (c) find the speed of the ball at the instant it passes over the pole, **(5)** (d) find the distance OC. **(2)** | | Apps. | Leave | |----------------------|---|----------| | Question 7 continued | h _{tos://hitishstadentroom.bd} | Olalik | | | ¹ Istuden | | | | ************************************** | | | | | ,
10, | | | | Act Sp. | | | | (3) | Question 7 continued | h _{ltps://britishshtdentroom.bd.3d.} | ŀ | |----------------------|---|------| | | *Entoon by | | | | | 9.40 | h _{tho} | Leave | |----------------------|--|-----------| | Question 7 continued | hitos: Abriists the letter on the state of t | biank | | Question / continued | *8h _{8th.} . | | | | · · · · · · · · · · · · · · · · · · · | | | | On by | | | | ∿ | 0, 4. | | | | (6). (8). | 1 | | lestion / continued | Tisp _{spq} | |---------------------|-----------------------------| (Total 16 marks) | | | TOTAL FOR PAPER IS 75 MARKS |